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EDIFES 0.4: Scalable Data Analytics for Commercial Building Virtual

Energy Audits

Abstract

by

ETHAN M. PICKERING

Energy Diagnostics Investigator for Efficiency Savings (EDIFES) has been developed

for scalable data analytics to conduct virtual energy audits on commercial buildings.

Built as a software package in R, EDIFES ingests building electricity data and readily

available weather data, applying various data analytics to determine building markers,

characteristics, and operational tendencies. Through these analyses building systems

are identified, including Heating Ventilation and Air Conditioning (HVAC), lighting, and

plug load or other equipment, with characteristics such as load and system schedul-

ing. Once building systems have been identified, EDIFES conducts virtual energy audits

to diagnose efficiency issues, determines the impact (i.e. return-on-investment or pay-

back) of potential retrofit actions (e.g. rescheduling HVAC to occupied hours or conduct-

ing a lighting retrofit). After this stage, it can be used for measurement and verification

(M&V) or continuous commissioning. Six buildings are presented in this thesis.

xv



1

1 Introduction

Energy is a global subject capturing the attention of all major countries, as evident

from the 2015 United Nation Climate Change Conference in Paris, France. A massive

consumer of energy is the building sector where there is also significant opportunity to

reduce energy waste1. The United States uses approximately 100 quads of energy each

year, with about 40% attributed to buildings for uses such as heating, cooling, lighting

and electronics2,3. The U.S. Department of Energy has recognized this potential and has

committed to reducing commercial building energy use 20% by 2020, as well as citing a

long term goal of 50% reduction in overall use4. The "Prioritization Tool," developed in

the Building Technologies Office (BTO) of the DOE has calculated the energy savings that

could be achieved from currently available and emerging technologies2,3. The analysis

revealed that implementation of cost-effective technologies available today could lead to

a reduction of energy use in buildings by 30% by 2030. Accounting for emerging tech-

nologies estimated to become cost-effective within 5 years, the energy savings reaches

55%2,3. This is equivalent to saving up to $300 billion per year if investments in energy

efficiency are made strategically.

Considering the large lifetimes and slow renewal rate of buildings, energy retrofits

are necessary to reduce energy consumption5. These retrofits typically are identified
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and quantified in terms of cost and payback time through building energy audits, where

physical tests are conducted within the building over an hours to days long time pe-

riod. Building simulations can be employed to have a deeper understanding of a build-

ing’s retrofit potential, but this requires developing a computational model of a build-

ing, which can be time consuming and cumbersome. Various data analytics approaches

have also been used to gain insight to buildings but limited progress has been made in

this area to date. Although solutions can be cost effective and payoff within several years,

building efficiency faces great obstacles to implementation. One might blame the lack

of progress on risk aversion and a distrust that after an investment is made, a return-

on-investment (ROI) might be a credible possibility3. The industry needs a transforma-

tional solution to simply diagnose problems, build trust in solutions, accelerate their

implementation and validate their future economic return.

1.1 Building Energy Audits

Even in today’s technologically advanced world, available energy efficiency diagnostics

approaches such as energy audits, building automation systems, equipment monitoring

and energy simulation can be expensive, confusing, and unduly complex.

1.1.1 Physical Energy Audits

Current energy audits typically entail a physical walk through of a building, perform-

ing leak tests, infrared imaging, blower door tests, equipment sub-metering, extensive

sensoring and more. These energy audits often require a team of individuals to survey
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an entire building, its tendencies, as well as occupant behavior6. The time and cost re-

quired can outweigh the potential energy savings, and the recommendations made can

vary drastically between audits6,7. In fact, an interesting comparison of three on-site in-

dependent energy audits on a single commercial building revealed shockingly different

findings and recommendations7. While each audit recommended prioritizing 5-10 en-

ergy conservation measures, only 4 of the same measures appeared on all three auditor’s

lists and none were prioritized in the same manner. This tendency of physical energy au-

dits has led building managers to question the economic benefit and ultimately refrain

from mobilizing their company to conduct energy audits6–9.

1.1.2 Building Information Modeling and Simulation for Energy Audits

Building Information Modeling (BIM) for energy retrofits has been explored as a more

suitable option for efficiency diagnostics10. These physics-based models, such as En-

ergyPlus, BLAST, DOE-2.1E, TRNSYS-TUD, and ESP-r among others11–13, can assess en-

ergy efficiency but require thousands of inputs14. Users must define the characteristics

of the building envelope, HVAC equipment, interior space, and occupancy levels, as well

as the hourly exterior temperature and solar insolation histories to accurately model the

energy consumption and operating characteristics of the building11,15. Estimating the

potential energy savings of a building retrofit using physics-based simulation models is

incredibly time consuming, since it requires the building characteristics to be precisely

defined. The resulting electricity consumption is calibrated with the historical utility

data and fitted through various refinement parameters in the simulation16,17. Despite

the massive inputs and detailed information, the building simulations have shown large

inaccuracies and vary in energy recommendations18,19. Various parameters, such as
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the solar irradiance gain or the convective heat transfer coefficient, of which can vary

up to 30% from actual values, frequently deviate and result in serious accuracy limita-

tions12,13. Therefore, trust from building managers and owners, even in the most input

intensive energy audit solutions, remains questionable.

1.2 Data Analytics and Virtual Energy Audits

Data analytics applied to buildings have been used in the past to measure the energy

savings associated with building retrofits20 and efficiency programs.21–23 Most notably,

PRISM (PRInceton Scorekeeping Method), released in 1986, was one of the earliest ap-

plications of using regression analysis to measure energy savings in commercial build-

ings.24 Utilities, companies and government agencies used the statistical procedures of

PRISM to analyze monthly utility bills to provide a weather-adjusted analysis of energy

consumption before and after building retrofits. The U.S. Department of Energy’s Ener-

gyStar Portfolio Manager built on the PRISM approach to include other datasets such as

occupancy, plug load and other variables and develop a rating system for buildings asso-

ciated with their energy efficiency.25 ASHRAE also developed the Inverse Model Toolkit

(IMT) for a similar purpose,26 which was later extended by Kissock et al. in 199827,

200326 and 201128.

Data analytics is a growing field of interest, and due to advancements in process-

ing, data storage, communication and analytics (such as distributed computing), there

are new opportunities to use a more rigorous approach to uncover insights to building

energy efficiency29. For this work, data streams from buildings and other sources are

used to explore relationships among independent and dependent variables, uncovering
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correlations, patterns, and anomalies and revealing unique characteristics and behavior

associated with specific buildings. This approach assumes that all of the building infor-

mation is inherently included in the historical energy (and other readily available) data,

and consequently, these building characteristics can be uncovered.

Various techniques have been used to study historical data including anomaly detec-

tion, clustering, and time series analysis30–34. Anomaly detection techniques have been

used to determine various irregular behaviors33 and detect anomalous consumption

in real-time31,32, however much of the energy savings potential does not lie in anoma-

lous behavior, but in systematically poor operation35. Clustering techniques, although

limited, give some insight into the typical operation and allow for classifications into

various usage groups useful for categorizing expected loads in particular conditions30.

Time series techniques, such as spectral or Fourier analyses, have been implemented to

determine underlying components of building energy36. Although spectral analysis is

useful for determining significant frequencies in the energy data37, many of these fre-

quencies are already known - season, week, day, etc. Additionally, spectral or Fourier

analyses may fail to quantify the behavior within each period, however this can be over-

come utilizing a classical time series decomposition approach.

A time series decomposition approach essentially smooths the data to uncover un-

derlying trends that may be useful for prediction, for determining typical behavior, or

for developing an initial understanding of building performance. Classical decompo-

sition uses the method of moving averages to examine trend cycles and seasonal be-

havior38. The trend cycles capture the long term behavior, while seasonal aspects are

revealed from the periodic fluctuation of the data. Unexplained events and uncertainty

must also be assessed to fully represent the behavior of the data as described by an error
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term or random component. This work focuses on classical time series decomposition

to identify operational characteristics of various buildings and point to opportunities

for energy savings. Classical time series decomposition techniques have been used in

a variety of applications including to study economics, weather, energy, and other time

varying phenomena,39–42 but with limited application to buildings. Current classical

time series decomposition analyses on building energy focus on load forecasting mod-

els, but does not assess building systems or efficiency measures43,44. These applications

of time series decomposition on building energy data give insights into periodic tenden-

cies as well as random behavior that were not otherwise noticed. This work augments

this type of insight by conducting classical decomposition to disaggregate the data into

trend, seasonal, and random components to further uncover unique building charac-

teristics38.

Identifying building characteristics further opens the door to building energy dis-

aggregation, arguably the most pivotal barrier to building energy efficiency improve-

ments45. Building energy disaggregation is the process of extracting component loads

from the aggregate building energy consumption and it continues to be investigated ex-

tensively in the literature, providing critical insights to performance for energy efficiency

recommendations46. Current building energy disaggregation research focuses on resi-

dential buildings, using high frequency sub minute to sub second electricity data46–49.

Commercial buildings have largely been ignored due to their complexity and lack of

granular and sub-metered data45. These solutions have also focused on using multiple

electricity data streams without considering other potentially useful data sets. However,

one study has leveraged the use of occupancy behavior data sets along with hourly elec-

tricity consumption data to disaggregate energy consumption, though on less complex
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Figure 1.1. EDIFES Development and Business Model. Consumer Data is in-
gested, analyzed, and used to enhance EDIFES building energy marker library.
This Model appeals to three customers, Original Equipment Manufacturers
(OEMs), Mechanical Contractors, and Building Managers.

residential buildings45,50. This work proposes the significant use of independent data

sets such as location, temperature, and irradiance data to allow for commercial building

disaggregation of coarse, 15-minute interval electricity consumption data.

1.2.1 EDIFES

This thesis focuses on scalable data analytics for virtual energy audits through the de-

velopment of the software platform EDIFES (Energy Diagnostics for Efficiency Savings).

EDIFES uses a rigorous approach to data analytics to demonstrate unique information

about building characteristics and operation without setting foot in a building. The de-

velopment and business model for EDIFES is described in Figure 1.1. EDIFES ingests

new building data, applies analytics, and classifies the building through markers con-

tained in the building energy marker library. Following the analytics, diagnostics are

determined on the building’s energy efficiency and prognostics are computed for en-

ergy conservation measures. EDIFES has been developed to appeal to three primary
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customers: Building Owners, Mechanical Contractors, and Original Equipment Manu-

facturers (OEMs).

EDIFES is currently a package developed in the R language for statistical comput-

ing and comprises over 40 functions. The functions are grouped into various categories,

such as cleaning and formating, processing, analytics, and reporting. Cleaning func-

tions are developed to ingest multiple troublesome data sets and merge them into one

useful data set primed for analysis. Processing functions perform elementary statistics

and create interim predictors to enable further, and more in depth analytics. Analyt-

ics functions are the largest and most impactful grouping. These functions compute

various identifiers of the buildings through data analysis, which are stored and noted

in the building energy marker library. The functions utilize complex analytics, such as

anomaly detection, system identification, time series decomposition, and disaggrega-

tion. Ultimately, the functions lead to the quantifiable energy savings potential for vari-

ous energy conservation measures and building retrofits. The sections within this thesis

describe the methods of these functions in detail, their structure, and the layers of anal-

ysis.

This work was done in collaboration with Mohammad Hossain, Jack Mousseau, and

Elle Zadina. Mohammad assisted with this work throughout the entire project and more

specifically contributed to early data, derivative, and classical time series decomposition

analyses. The structure and work flow of EDIFES was largely to Jack’s credit. He had

also contributed numerous testing functions and usage capabilities bringing EDIFES

to a robust software. Much of the GIS data handling and cleaning was created by Elle

Zadina, who also contributed significantly to early data analysis and derivative analysis

for system identification.
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2 Early Data Analytics

2.1 Data Characteristics

The analysis presented herein describes the operations of six commercial buildings in

two different locations: San Jose, California and Richardson, Texas. Table 2.1 describes

each building by its location, size, type, climate classification51, and HVAC characteris-

tics. The building data was collected from utility electricity meters (kWh) taken at 15-

minute intervals and measured as a function of time for approximately 2 years. Hourly

weather data was collected from publicly available National Oceanic and Atmospheric

Administration (NOAA) datasets (within 25 miles from building location), and privately

held 30 minute interval GIS datasets (within 200 meters of building location) were also

employed52. Both NOAA and GIS weather data sets are used interchangeably in this

analysis on the premise that EDIFES will employ the use of both data sets depending on

building location and data availability. The weather data files include: temperature, dew

point, wind speed, global horizontal irradiance, and others.
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Building Location Size (sqft.) Purpose Climate Electric HVAC
Building 1 Richardson, TX 226000 Office/Lab Cfa Heating
Building 2 Richardson, TX 168000 Office/Lab Cfa Heating/Cooling
Building 3 Richardson, TX 244000 Office/Lab Cfa Heating/Cooling
Building 4 San Jose, CA 109000 Office Csb Cooling
Building 5 San Jose, CA 115000 Office Csb Cooling
Building 6 San Jose, CA 168000 Office Csb Cooling

Table 2.1. Building characteristics of all six buildings. Includes location,
size, purpose, climate, and electric HVAC

2.2 Data Preprocessing

The electricity, NOAA, and GIS data files are all received in various formats, requiring

substantial formatting processes. Electricity data is received as a comma separated val-

ues file (CSV) containing two columns, local timestamp and electricity consumption, in

MWh. Table 2.2 shows a sample of the data as read.

Key.Performance.Indicators. Utility.Electricity.Consumption..MWh.
2012-07-01T00:00:00-04:00 0.04
2012-07-01T00:15:00-04:00 0.04
2012-07-01T00:30:00-04:00 0.04
2012-07-01T00:45:00-04:00 0.04
2012-07-01T01:00:00-04:00 0.04
2012-07-01T01:15:00-04:00 0.04

Table 2.2. Raw Building Electricity Data

These fifteen minute data are computed via time integration. Over a 15-minute in-

terval the power data, or load, of a building changes frequently. As it does, the load

is integrated and the integration is reported for the entire interval. Consequently, the

power load may take various shapes and values within the 15-minute interval, but result

in the same energy consumption value. Figure 2.1 shows an example of these occur-

rences. This poses a problem in determining when pieces of equipment turn on or off.

For example, if one of two equal sized equipment turned on, while the other turned off at
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approximately the same time, the corresponding energy consumption would then sim-

ply report zero, masking the actual behavior of the building. A second characteristic of

the time integration is the carry-over of an event from one interval to the next. Consider

a 100W piece of equipment that turns on at the seven and half minute of a 15-minute

interval. The integration would lead to a 12.5Wh change in energy ( 100W ∗ (7.5/60)hr ).

The following 15-minute interval will have the same 100W piece of equipment on for the

entire interval of 15-minutes, which in turn would result in an increase in consumption

of an additional 12.5Wh. Figure 2.1 displays the carry-over inherent in the time integra-

tion of electricity consumption.

Considering the time integration constraints, knowing the meter resolution helps

determine the smallest piece of equipment that could be detected in analysis. The func-

tion meter_res() calculates an individual meter resolution. Outputs for all data reports

appears in Table 2.3. This table shows, for Buildings 1-3, equipment under 1.8kW may

not be detected, and for Buildings 4-6 significantly smaller equipment may be ideniti-

fied.

Meter Resolution (W)
Building 1 1800.00
Building 2 1800.00
Building 3 1800.00
Building 4 40.00
Building 5 120.00
Building 6 90.00

Table 2.3. Meter Resolution for all Six Buildings

The NOAA weather data is received as a text file and is converted to a CSV file con-

taining the columns timestamp, in coordinated universal time (UTC), temperature, dew

point, precipitation, and others. Values are recorded every hour at a particular minute,
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Figure 2.1. Two Examples of Power and Consumption Curves. Left: Different
power loads and same consumption. Right: Different power loads with different
consumption.

although datasets vary their specified recording minute. The datasets also include var-

ious daily statistics recorded with the appropriate time stamp. For example, the maxi-

mum temperature is recorded in the data at the time it occurred. This is troublesome as
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each day will include 96+ data points, recorded at various unpredictable times, therefore

requiring code to determine the correct minute for which to look for hourly recordings

and omit the rest. There are also other issues with these data sets, including incomplete

data, requiring further cleaning prior to analysis. Tables 2.4, 2.5, and 2.6 display some of

the raw NOAA data.

USAF WBAN YR..MODAHRMN DIR SPD GUS CLG SKC L M
745090 23244 201201010000.00 *** 0 *** 722 CLR * *
745090 23244 201201010056.00 330 6 *** 722 CLR * *
745090 23244 201201010156.00 10 9 *** 722 CLR * *
745090 23244 201201010256.00 360 7 *** 722 CLR * *
745090 23244 201201010356.00 *** 0 *** 722 CLR * *
745090 23244 201201010456.00 *** 0 *** 722 CLR * *

Table 2.4. Raw NOAA Weather Data - Columns 1-10

H VSB MW MW.1 MW.2 MW.3 AW AW.1 AW.2 AW.3 W TEMP DEWP
* 10 ** ** ** ** ** ** ** ** * 61 39
* 10 ** ** ** ** ** ** ** ** * 59 41
* 10 ** ** ** ** ** ** ** ** * 57 44
* 10 ** ** ** ** ** ** ** ** * 56 44
* 10 ** ** ** ** ** ** ** ** * 54 44
* 10 ** ** ** ** ** ** ** ** * 53 43

Table 2.5. Raw NOAA Weather Data - Columns 11-23

SLP ALT STP MAX MIN PCP01 PCP06 PCP24 PCPXX SD
1021.7 30.16 ****** 63 51 ***** ***** ***** ***** **
1021.7 30.16 1020.1 *** *** 0 ***** ***** ***** **
1021.8 30.17 1020.5 *** *** 0 ***** ***** ***** **
1021.7 30.16 1020.1 *** *** 0 ***** ***** ***** **
1021.4 30.16 1020.1 *** *** 0 ***** ***** ***** **
1021.5 30.16 1020.1 *** *** 0 ***** ***** ***** **

Table 2.6. Raw NOAA Weather Data - Columns 24-33

The GIS weather data is received as a CSV file containing the columns timestamp, in

local standard time; temperature; global horizontal irradiance; relative humidity; and
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others. In comparison, the GIS data is relatively clean and simple. The GIS data is

determined using a sophisticated climate model, that employs satellites to determine,

through calculation, the temperature, wind speed, solar irradiance, relative humidity,

etc. The data is precise within 200m, but may contain uncertainties inherent in the

model. In contrast, the NOAA data has a higher accuracy due to direct measurements,

but the distance from the building location poses its own uncertainty and error. Tables

2.7 and 2.8 show the raw GIS weather data.

Date Time GHI DNI DIF flagR
01.07.2012 00:15 0 0 0 0
01.07.2012 00:45 0 0 0 0
01.07.2012 01:15 0 0 0 0
01.07.2012 01:45 0 0 0 0
01.07.2012 02:15 0 0 0 0
01.07.2012 02:45 0 0 0 0

Table 2.7. Raw GIS Weather Data - Columns 1-6

SE SA TEMP WS WD RH AP
-29.47 -179.08 15.90 1.70 248 92.80 1013.90
-28.97 -171.20 15.80 1.60 249 92.30 1013.40
-27.66 -163.52 15.80 1.50 249 91.90 1013.10
-25.62 -156.15 15.70 1.40 250 91.90 1013.00
-22.89 -149.21 15.30 1.30 250 92.40 1013.00
-19.56 -142.73 14.60 1.20 251 94.30 1013.10

Table 2.8. Raw GIS Weather Data - Columns 7-13

The weather data obtained for this analysis is critical for understanding a building’s

response to outdoor weather conditions. In order to perform such analysis, the weather

and electricity data sets must be merged by timestamp. Remember all three data sets

differ in time zones and recording intervals. To create continuity among the data, each
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weather observation was imputed (with linear interpolation) across the hour or half-

hour to create 15-minute interval data. Due to the extreme inconsistencies between

data sets on daylight savings days, they were omitted from the analysis.

The functions developed in EDIFES to automatically perform the above processing

tasks include, bee_format(), noaa_addition(), gis_clean(), and gis_bee(). Additionally,

the function day_data() creates columns that indicate the day of week, weekend/weekday,

business days, and components of the date-time (Day, Month, Year). Function sun_tagging()

creates a column indicating the sunrise and sunsets times for each day of the year given

the latitude and longitude of the building, the function also creates interim predictors

describing the night and day time hours. Lastly, the function fullday_tag() ensures 96

data points are present for each day following the merging and initial tagging functions.

This is necessary to ensure accurate time series analyses of constant periods can be con-

ducted.

2.3 Early Data Analysis

2.3.1 Data Cleansing

Initial analysis was performed on all of the datasets to ensure understanding of the data

types, as well as to identify potential issues. All datasets, underwent graphical and statis-

tical analysis to identify potential anomalies. In particular, utility electricity data is well

known to be incomplete, noisy, and anomalous, recording non-physical quantities or

none at all at times. Figure 2.2 shows the raw electricity consumption for the six build-

ings over two years, 2012-2014, with the exception of Building 6. By visually compar-

ing the data, multiple characteristics of the electricity consumption appear. Buildings
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1-3 have relatively compact operation when compared to their large baseload - these

buildings also maintain a constant base-usage and peak-usage regardless of the season.

Buildings 4 and 6 show higher variability in usage compared to their baseload, but show

differences in seasonal operation. Building 4 maintains a constant base, but varies in

peak loading, while Building 6 varies in base usage and peak usage throughout the sea-

sons. Building 5, is entirely different, exhibiting large loads that render the visual useless.

These many differences among the data sets, even before analysis, demonstrate the util-

ity of a population-based analysis of building energy. Figure 2.3 shows one full week of

raw data for each of the buildings. The first five increases in usage indicate the first five

weekdays, Monday-Friday, followed by Saturday and Sunday, of which shows little us-

age when compared to weekdays except in the case of Building 6. The third day in the

figure is July 4th, displaying the decrease of energy usage on a holiday as compared to

normal workdays, yet still consumes much more than a weekend. Buildings 1-3 show

similar behavior in usage, as well as general similarity day to day, while Buildings 4-5

show increased variability. Finally, Building 6 presents a smooth operation unlike any of

the other buildings.

In Figure 2.2 Building 5 exhibits anomalous behavior with a large spike toward the

end of the dataset, as well as two raised sections of electricity consumption. Using an

anomaly detection R package53 developed by Twitter, we can identify and then remove

or fix such anomalies in the dataset as necessary. Figure 2.4 shows the percent of anom-

alies in the Building 5 data set (before and after the cleaning). There are two types of

anomalies that appear in these figures. The first is an extreme outlier, seen as the spike,

which is simply removed and noted using the function mean_shifts(). This function also

detects mean shift anomalies which occur when the data has moved from one trend to
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Figure 2.2. Raw Energy Consumption of full datasets for all 6 Buildings. Build-
ings 1-3 show high baseload consumption, Building 5 shows the presence of out-
liers, and all buildings exhibit missing data.

a new and distinctly different trend. For Building 5 the data has randomly doubled in

value, later to be found an error in the meter that double counted the usage over this

time period. Using the developed function mean_shifts() the two shifted data ranges are

determined and fixed to show correct usage.
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Figure 2.3. Raw Energy Consumption of one week for all 6 Buildings

A second building electricity function is used to assess missing data points in elec-

tricity consumption. The function missing_data() is used to impute missing data points

(with linear interpolation) for intervals less than one hour. In the event that a meter

loses connection for an hour, the rest of the day’s electricity usage is still worthy of anal-

ysis. This step allows additional days to be analyzed, despite minor data losses. Those



Early Data Analytics 19

Figure 2.4. Building 5 Raw Energy Consumption Data (5.48% Anomalies) and
Cleaned Energy Consumption (0.04% Anomalies) after missing data and mean
shifting functions

days which exhibit data losses at an hour or larger are omitted from analysis to ensure

imputed values are minimal. Figure 2.4 shows Building 5 with 5.48% anomalies before

cleaning and with 0.04% anomalies following the use of both cleaning functions. Figure

2.5 shows all six buildings after data cleansing through the functions missing_data() and

mean_shifts(). All cleansed data report anomalies of less than 0.5%.

NOAA and GIS weather data are gathered for both locations in Richardson, TX and

San Jose, CA. NOAA weather data is collected from Moffet Airfield for San Jose, CA and

Dallas Fort Worth International Airport for Richardson, TX. GIS weather data is collected



Early Data Analytics 20

Figure 2.5. Cleaned Energy Consumption of full datasets for all 6 Buildings

from exact latitude and longitude coordinates of the buildings to an accuracy of 200m.

The weather data includes complete observations for the time interval of interest, July

2012 - July 2014 and requires no additional cleaning. Figure 2.6 displays the two years

of temperature data (Fahrenheit) from NOAA for both locations and Figure 2.7 displays

the same two year interval temperature data for GIS datasets (Celsius). Comparing the
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Figure 2.6. NOAA Temperature Data in Climates: Csb- Richardson, TX (Build-
ings 1-3) and Cfa-San Jose, CA (Buildings 4-6) 51

Figure 2.7. GIS Temperature Data in Climates: Csb- Richardson, TX (Buildings
1-3) and Cfa-San Jose, CA (Buildings 4-6)

NOAA and GIS data sets the trends of the data are unsurprising similar and indicates

the use of either data set as satisfactory, however the amplitude of the data for each is

noticeably different. NOAA presents data which has less daily variability overall, while

the GIS data shows a much larger fluctuation. The climates are also distinctly different

with San Jose showing milder temperatures throughout the data, 95F - 30F (35C - -1.1C),

while Richardson varies from 106F - 15F (41.1C - -9.4C).
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Figure 2.8. NOAA Temperature Data for One Week in Climates: Csb- Richard-
son, TX (Buildings 1-3) and Cfa-San Jose, CA (Buildings 4-6)

Figure 2.8 and Figure 2.9 exhibit a week view of the data to indicate the typical char-

acteristics seen in the temperature data. The amplitude difference between the two data

sets is apparent, as well as the difference in climates. Richardson has a larger range in

temperatures in an average day from 100F-75F (37.8C - 23.9C), while San Jose ranges

from 75-55F (23.9C - 12.8C). There is also a noticeable difference in the shape of each

data set between the NOAA and GIS data in Figures 2.8 and 2.9. NOAA data appears

sharper and jagged when compared to the GIS data, which is smooth and rounded. This

can be attributed to NOAA’s direct measurements in temperature compared to the GIS

model’s calculations. Regardless, both temperature data sets present similar values and

trends for each day further justifying the use of either data set in analysis.

Figure 2.10 displays the entire datasets of global horizontal irradiance over two years

with peak values corresponding to midday irradiance levels and nighttime is represented

by zero values. The peak values of the data change seasonally for both climate zones,

with Richardson ranging from 1000 W /m2 - 600 W /m2 and San Jose from 1000 W /m2 -

500 W /m2. The density of each plot points to the relative amount of sunny and cloudy
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Figure 2.9. GIS Temperature Data for One Week in Climates: Csb- Richardson,
TX (Buildings 1-3) and Cfa-San Jose, CA (Buildings 4-6)

days in each climate zone. Comparing the two plots, Richardson has more dips from

the seasonal peak of the data compared to San Jose, indicating that San Jose’s climate

encounters fewer cloudy days. Figure 2.11 provides a week long snapshot of irradiance

data showing how irradiance changes throughout each 24 hour cycle. Similar findings

from the previous figure are further represented. Midday values exhibit the peak values

of irradiance while night is shown as zero. San Jose data has virtually the identical daily

trend (sunny), while Richardson shows two partly cloudy days.

2.3.2 Exploratory Data Analysis

For most buildings, the largest fraction of energy comes from heating ventilation and air

conditioning (HVAC)1, which responds largely to the outdoor weather characteristics.

Therefore, understanding how a building is affected by weather is critical. To determine

the relationship between weather and electricity consumption, correlations and scatter

plots of electricity versus weather data were examined. Figure 2.12 shows a pair-wise

correlation plot corresponding to Building 1, created with the function panel.pairs()
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Figure 2.10. GIS Irradiance Data in Climates: Csb- Richardson, TX (Buildings
1-3) and Cfa-San Jose, CA (Buildings 4-6)

Figure 2.11. GIS Irradiance Data for One Week in Climates: Csb- Richardson,
TX (Buildings 1-3) and Cfa-San Jose, CA (Buildings 4-6)

from the R package psych54. A pair-wise correlation plot displays scatterplots of two

variables and the linear correlation between them. In this case, the data sets are: elec-

tricity consumption, exterior temperature, irradiance and relative humidity. Figure 2.12

shows the correlations of energy to temperature as -0.44, energy to irradiance 0.15, and

relative humidity 0. All three of these correlations are surprisingly low, with the high-

est being temperature and energy, of which still shows a weak to moderate (less than
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0.67 magnitude55) negative correlation, indicating the building electricity load increases

with decreasing temperature. Irradiance and relative humidity show very weak correla-

tions at 0.15 and 0 values respectively. Again this is surprising as irradiance values are

known to effect the thermal load of the building and humidity varies the specific heat

capacity of ambient air, both resulting in responses of electricity loads from HVAC. Note

that these values are analyzed at the exact same time interval, i.e. the electricity con-

sumption at a specific time in the day is being compared to the exterior temperature at

that same time. A lower than expected linear correlation may be explained by the fact

that: 1) plug load use in the building has no relationship to outside temperature (one will

use their desk computer regardless of summer or winter temperatures); 2) the building

has a large thermal mass and will take time to respond to changes in ambient outdoor

temperature; 3) non-electric HVAC systems are present and/or the heating/cooling is

provided via another building or a district energy configuration such as is typical for a

campus; and 4) building set point temperatures change in occupied and unoccupied

states. To account for these issues a cross correlation analysis can be utilized. The func-

tion ccf()56 determines the best lag, or relative shift, of each data set in time to find the

highest correlation. Figure 2.13 shows a maximum correlation of -0.5 at a lag of 31 data

points, or seven hours and 45 minutes. Despite the higher value, the correlation still ex-

hibits a relatively weaker relationship than expected. The other parameters, irradiance

and relative humidity also increased marginally with this analysis.

Considering the lagged response of electricity consumption to weather data, as well

as the probability that occupancy plug load consumption hurts the correlation values,

a mean day consumption and weather data approach was then considered. For each
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Figure 2.12. Correlation Plot of Weather Data and Energy for Building 1

Figure 2.13. Cross Correlation Plot of Energy and Temperature for Increasing
Lag Values of Building 1
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day, the mean electricity consumption was calculated, as well as the mean tempera-

ture, irradiance, and relative humidity, along with other variables. To do this EDIFES

contains the functions elec_noaa_stats() and gis_stats() to compute the daily mean val-

ues, along with other descriptive statistics, or interim predictors. Those statistics in-

clude minimum values, maximum values, day ranges, mean values of prior days, energy

derivatives, temperature derivatives, and others. Here only the mean electricity con-

sumption, temperature, irradiance, and relative humidity are used. Figure 2.14 shows a

pair plot of the mean values of the same variables as previously presented for Building

1. By analyzing the mean values, much higher correlations are present: electricity vs.

temperature increases (in magnitude) to -0.56, vs. irradiance to -0.27, and vs. relative

humidity to 0.06. It is also worth noting that due to the negative association of energy

and temperature, it also fits well that the same is true for irradiance. The negative cor-

relation indicates that as temperature increases (thermal load increases) the electricity

consumption decreases, and as irradiance increases (thermal load increases) the elec-

tricity consumption decreases. This behavior would be expected if only the heating (i.e.

winter) season were being analyzed since building electricity consumption typically in-

creases as temperature rises in summer, but here we know we are analyzing a full two

years of data. So we may speculate that there is no cooling system in the building or that

perhaps the building is in a climate where cooling is minimal. In this case, it was later

determined through EDIFES, and then confirmed by the building manager, that Build-

ing 1 is connected to a district supply cooling facility and does not see any electrical

loads in summer operation, but is heated electrically in the winter.

Although the daily mean values improved correlations, they were still weakly corre-

lated. To further improve the correlation, further criteria for analysis was applied, such
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Figure 2.14. Correlation Plot of Mean Weather and Energy Data for Building 1

as day of the week. The EDIFES function day_data() was developed to associate each

data observation with an interim predictor indicating various attributes such as day of

the week, weekday or weekend, and business day. Considering the large difference in

usage during weekends or weekdays, the analysis was further refined using only week-

days, Figure 2.15 shows the relationships and resulting correlations for Building 1 again.

Through this refinement the temperature-energy correlation increases to -0.61 and the

irradiance relationship to -0.28. Again, these values are improved, but still considered

weak to moderate correlations. The same analyses were conducted on all buildings with

all showing similarly weak correlations, thus demonstrating the complexity of building

energy far past just a weather data analysis and the necessity for layers of refinement.
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Figure 2.15. Correlation Plot of Mean Weather and Energy Data of Weekdays
for Building 1

Since most buildings exhibit distinct behaviors in summer and winter, the analysis

was further separated into two corresponding data sets. As a result, Building 1 electric-

ity consumption increases with lowering temperatures in the winter, and decreases with

increasing temperatures in the summer providing additional evidence that the build-

ing likely has electric heating (or there is some significant portion of heating system

is electric) and non-electric cooling. The function created to explore this relationship,

hvac_elec() plots the building and weather data, and then calculates a smooth spline of

electricity consumption vs. exterior temperature, using the function smooth.spline56 in

R. The spline function fits a cubic spline to the data and with a smoothing parameter of

1, the spline shown in Figure 2.16 was created. Following the fit, the end points of the

spline are taken and a linear line is created in order to determine the change point in the
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data, or the point where the spline changes direction. To find this point, the distance

from the line to the spline is calculated with the maximum distance indicating the tem-

perature at which the building changes operation. This point is recorded and kept for

later analysis. Using the change point the data is split into two, and each analyzed sepa-

rately. The data is then fit to a linear model of a least squares regression with electricity

consumption as the dependent variable (predictor) and temperature as the indepen-

dent variable (response). The slope of the model is then taken and recorded from the

function. The slope below and above the change point indicates the likely type of HVAC

system used in the building. In cold weather a negative slope indicates electric heating,

while a positive or very low slope likely corresponds to non-electric heating (natural gas

or district heating). In hot weather the reverse is true, a positive slope indicates electric

cooling, while a negative slope corresponds to non-electric or no direct cooling. Table

2.9 displays all of the outputs of the hvac_elec() function, including the change point

temperatures, hot and cold slopes in kW h/(F ∗ sg f t .)∗10−5, as well as the associated

HVAC characteristic. Further pairs plots for each building are located in Appendix B,

showing the pairs correlations when the data is additionally split along the change point

temperatures.

Building Change Point (F) Hot Slope Hot HVAC Cold Slope Cold HVAC
Building 1 70.50 -0.03 Non-Electric -0.43 Electric
Building 2 54.50 0.70 Electric -0.53 Electric
Building 3 51.00 0.48 Electric -0.24 Electric
Building 4 61.00 1.51 Electric 0.38 Non-Electric
Building 5 61.75 2.32 Electric 1.43 Non-Electric
Building 6 54.25 1.06 Electric 0.43 Non-Electric

Table 2.9. HVAC Electricity Function Output for all 6 Buildings
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Figure 2.16. Energy vs. Temperature with a fitted spline and line through end-
points, Building 1
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3 Derivative Analysis for System

Identification

Taking the first and perhaps the second derivative of the data can prove insightful

for a building’s operation. This work focused on computing the standard deviation from

the differentiated data and using it to examine exceptionally large temporal changes in

energy usage. This analysis allows for building systems, such as HVAC, to be identified

and their scheduling determined.

3.1 Method of Derivative Analysis

Due to the constant time interval of 15-minutes, the derivatives taken in this analysis are

simply the difference in energy (or temperature, irradiance, etc.) of one time step from

the previous. ∆Ener g y = Ener g yi −Ener g yi−1

Figure 3.1 shows the derivatives of approximately one week of data from Building 1.

Most of the data straddles 0 with small variations, but a few data points extend much

farther by multiple standard deviations. Taking the standard deviation of the differenti-

ated data and considering specific multiples of the standard deviations from the mean,
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Figure 3.1. Building 1 Energy Derivatives over One Week

patterns begin to emerge. Assuming the data to have a normal distribution (true for n >

30 per the central limit theory57 and n > 70,000 for two years of data), all data exceeding

the mean plus one standard deviation comprises of only 15.8% of the data, and similarly

for the mean minus one standard deviation57. Increasing the criteria to two standard

deviations corresponds to 2.2% of the data. The occurrences that lie above or below the

one standard deviation mark can be subsetted, or pulled separately into another dataset,

and analyzed accordingly.

Pulling the data into two subsetted data sets reveals that the distribution is not quite

perfectly normal, with a kurtosis value less than three, as values above the mean (0.0007
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Figure 3.2. Building 1 Turn On and Off Events, Standard Deviation ±1

kWh) plus one standard deviation (4.1201 kWh) include just 5.36% of the data and be-

low one standard deviation reports as 5.94%. This ensures that these events are quite

rare and meaningful. After subsetting the values, they can be visualized by plotting each

occurrence by the time of day it occurred vs. date of occurrence, as well as identifying

the intensity of each event by a light to dark color-scale. As shown in Figure 3.2 light

corresponds to a minor event and dark to a major event. The Figure depicts both the

positive events in red and the negative events in blue. The positive events correspond

to the "Turn On" events, due to the nature that they indicate a device, piece of equip-

ment, or entire system has turned on, using a significant amount of energy. Similarly the

negative events refer to the "Turn Off" events, or when significant equipment turn off.
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The figure indicates one very large "turn on" event at 5:45 a.m. For the "turn off"

times there are three distinct events at 5:45 p.m., 7:45 p.m., and 9:00 p.m., although all

three of these are smaller in magnitude than the large turn on event in the early morning.

These "turn on" and "turn off" events consistently occur over the course of two years and

indicate that they are scheduled events of particular systems in the building. Further,

the magnitude can be seen, especially in the "turn on" events plot, to vary throughout

each year suggesting the systems are related to the HVAC of the building. These findings

can help assess the scheduling of a building’s large systems and recommend alternative

scheduling and the corresponding savings that would result. For example, Building 3

has turn on and off events early in the morning 5:45 a.m. and late in the evening 9:45

p.m., (refer to Appendix B for tables and figures of Building 3 systems). By reschedul-

ing the turn on and off events Building 3 has the potential to save 125 MWh ($8,800 at

$0.07/kWh in Richardson, TX) per year by simply changing the scheduling to 7 a.m. - 7

p.m. It is important to emphasize that this energy and cost savings was calculated us-

ing the building’s actual data over the course of the past year and the method of time

series decomposition described in the next chapter. No computational simulations or

assumptions were made as might have been required using conventional auditing meth-

ods. Certainly, weather will influence the actual savings into the future, but this type of

analysis based on the building’s actual energy data provides significant confidence in

the results.

Though the plots give an insightful visual of the building’s operation, this analysis is

performed automatically with the EDIFES function system_finder(). The system finder

function conducts the derivatives analysis and reports all systems which occur with a
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Figure 3.3. Building 1 On/Off Systems

frequency over 20%. Frequency is defined as the number of total occurrences of a spe-

cific "turn on" or "turn off" time divided by the total days of available data. Table 3.1

and 3.2 display the systems results that exhibit over a 20% frequency. Both tables report

the amount of occurrences, time of day the event occurs, average ∆E , frequency, and

the energy in Watts required of a piece of equipment or system to create the associated

energy change over a 15-minute interval.

Occurences Time Average dE (kWh) Frequency Energy (W)
1 553.00 00:05:45 22.09 0.73 12213.45

Table 3.1. Turn On Events for Building 1

Occurences Time Average dE (kWh) Frequency Energy (W)
1 371.00 00:17:45 -7.91 0.49 -2933.55
2 317.00 00:19:45 -9.02 0.42 -2858.85
3 162.00 00:21:00 -6.41 0.21 -1038.60

Table 3.2. Turn Off Events for Building 1
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All of the "turn on and off" events can subsequently be plotted to show a building

manager or user the systems in their building, associated scheduling, and the magni-

tude of the equipment "turn on/off" as shown in Figure 3.3. This analysis allows one

to determine how many systems may exist, whether they are operating in a sensible

schedule, and also allow for the detection of certain lighting sensing systems, which will

be further discussed in Chapter 5 - Disaggregation.
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4 Time Series Decomposition for

Building Daily Operation Signatures

Building electricity consumption data is collected via time step intervals, and there-

fore is classified as a time series data set that may be analyzed using a classical decom-

position time series analysis. Classical time series decomposition provides a means for

identifying operational characteristics of various buildings and points to opportunities

for energy savings. Time series decomposition techniques have been widely used in

many fields, as well as in building research, but only in load forecasting models, not in

energy efficiency data analytics43,44. An application of time series decomposition on

building energy data can provide insights into daily and seasonal operation signatures

and contribute to further understanding of building operation that a derivative analysis

fails to fully capture.

4.1 Method of Classical Time Series Decomposition

Mathematically the decomposition is described as: X t = f (Mt ,St , Zt ) where X t is the

observed time series data, Mt is the trend component, St is the seasonal component
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and Zt is the error term, or random component. The additive model: X t = Mt +St +Zt is

used here to capture the seasonal variation changes through successive periods38. The

variables Mt , St , and Zt are developed through moving averages defined by the observed

period of the data. Decomposition requires an input of period, P, to first calculate the

trend component, Mt , using a 2 x P-moving average, if P is even, and a P-moving av-

erage, if P is odd. The detrended series, D t is calculated as D t = X t −Mt and then the

detrended series is averaged over the period to compute the seasonal component, St . To

complete the decomposition, the remainder, Zt is calculated by Zt = X t −Mt −St . These

three data sets represent a disaggregation of the data and each set provides new insights

previously undiscovered. The seasonal component provides new information on daily

operations, the trend indicates the underlying movement of electricity consumption,

and the random component may pin point specific periods in the data displaying un-

characteristic operation. To perform the analysis the function, decompose 56, from the

stats package in R, is used to conduct the classical decomposition method described

above.

4.2 Classical Time Series Decomposition of

Building Energy Consumption

Throughout this thesis classical time series decomposition is performed on two years

of building data using a period of 24 hours (i.e. P = 96 points). Utilizing a period of

one day allows for the seasonal, or periodic component, to reflect the average electricity

consumption for a given day. Figure 4.1 demonstrates the entire decomposition method

performed on summer temperature and electricity data from Building 1, displaying the
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Figure 4.1. Time Series Decomposition of Temperature, top, and Energy, bot-
tom, for Building 1

various components: observed, trend, seasonal, and random. The additive nature of

classical decomposition is seen as the observed data can be replicated by summing the

trend, seasonal, and random components. Beginning with the temperature data, it is

commonly known that temperature follows a short term periodicity of one day. The

seasonal component captures this typical temperature fluctuation throughout each day
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and repeats this exact seasonal component fives times over. The trend component cap-

tures the overall magnitude and progression of temperature, while the random com-

ponent displays any deviations in the observed data from the trend component and

seasonal component data in aggregate. Moving to the electricity data, the exact same

breakdown applies. The trend component represents the magnitude of the consump-

tion, 340kWh, and graphically the trend component appears to move substantially, but

has less than a 2% variability over the week interval. The random component exhibits

many jagged features as it encompasses events unexplained by the daily periodicity,

most likely unscheduled human interaction with plug load, such as lab experiments or

non-HVAC equipment. Finally, the seasonal component is seen repeated 5 times over,

again due to the periodicity, but it is this repeated seasonal component that provides the

most interesting insights; the typical daily operation of a building.

Figure 4.2 shows one period, or one day, of the seasonal component of electric-

ity data in Figure 4.1. This average electricity consumption can also be described as

a building’s typical daily operation, or daily operation signature. Figure 4.2 shows the

daily building operation signature of summer weekdays gathered from over two years

of data for Building 1, with electricity consumption along the y-axis and the hour of the

day along the x-axis. The features of the curve indicate various usage characteristics

and operational tendencies. As shown, there is an apparent spike in usage at approxi-

mately 6 a.m., indicating a scheduled HVAC event by the building management system

- in alignment with the "turn on" time from Chapter 3, followed by a sharp decrease,

showing the tendency for the HVAC units to overshoot demand and drop in usage - a

characteristic of the building unidentified by the simpler derivative analysis. The build-

ing then undergoes a gradual increase in use from growing occupancy (plug load and



Time Series Decomposition forBuilding Daily Operation Signatures 42

Figure 4.2. Building 1 Daily Operation with Operational Characteristics Identi-
fied. Determined from two years of data considering only July/August weekdays.

HVAC) peaking at about 1 p.m., and then a gradual fall throughout the rest of the day as

occupancy decreases. Finally, three more significant drops occur at 5 p.m., 7 p.m., and 8

p.m. indicating more scheduled HVAC events, or "turn off" times.

4.2.1 Time Series Decomposition with Subsetting Criteria

Building operation depends on a variety of different predictors and associated responses.

For example, the day of the week and the weather contribute to patterns and correlations

that provide insight to building operation and characteristics. The method of subsetting

allows for the division of the data into various groups based on defined criteria (e.g. day
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of week) and provides an opportunity to compare various characteristics among the cri-

teria. Figure 4.3 presents the energy consumption daily operation signature of Building

1 in kWh versus time of day after using a time series decomposition of all two years of

data and subsetting criteria for day of the week. While applying subsetting techniques

the continuity of the energy data is compromised. For example, in a day of the week

analysis all Mondays do not represent a continuous data set. To account for this, each

seasonal component is shifted so that time zero, midnight, starts at 0kWh allowing for

accurate comparisons between the data. The plot shows the obvious difference in the

weekend and weekday lines, as well as the differences between the weekdays, particu-

larly Monday and Friday. The discrepancy on Fridays can be attributed to lower load

requirements in this office/lab building due to reduced occupancy. Monday’s increased

consumption is the result of increased HVAC requirements following a weekend of re-

duced HVAC use and a lower weekend internal set point temperature.

Figure 4.4 expands this analysis to all six buildings to allow for further comparison

and insight. Building 2 shows highest consumption on Monday, lowest weekday con-

sumption on Friday and lowest weekend consumption on Sunday. There is also one

distinct "turn on" period, 4:45-5:30a.m. and two distinct "turn off" periods at 5:45p.m.

and 11p.m., furthering validating the derivative analysis findings. Most interesting how-

ever, is the weekend operation signature compared to the weekday operation signature.

Building 1 displays various "turn on" and "turn off" events during the weekdays, but

not the weekends. Building 2 however, does show similar HVAC events, although at a

different magnitude compared to the weekday, indicating peculiar weekend behavior.

This finding also indicates the size of a unit and its overall impact on the electricity con-

sumption, showing a 30kWh load over 15-minute intervals corresponding to a 120kW
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Figure 4.3. Building 1 Daily Operation Signatures for Various Days of the Week

unit. Considering the constant operation observed in the curve from 4:45 a.m. until

10:45 p.m. this piece of equipment consumes approximately 2160 kWh a day - a cal-

culation that requires time series analyses to confirm electricity consumption succeed-

ing a "turn on" event and preceding a "turn off" event. Derivative analysis provides

identification measures, where time series allows for consumption quantification along

with other subtler characteristics. Through the elimination of this HVAC event on the

weekends, the building manager would save approximately 225 MWh, or about $16,000

annually (considering a $0.07/kWh rate). Furthermore, rescheduling all of these events,

weekday and weekend, to typical occupied hours, 7a.m to 7 p.m. would result in another

258 MWh, or $18,100 annually.
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Figure 4.4. Daily Operation Signatures for 6 Buildings Identifying Operational
Characterisitcs for Each Day of the Week

Building 3 shows similar characteristics as Building 1 and 2, including scheduled

HVAC events and lower weekend/weekday usage. However, the most interesting charac-

teristic in this building is the consumption spike at 8 a.m. for a brief period on Tuesdays
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only, an uncharacteristic building consumption feature is observed and may require the

attention from a building manager. The event does not affect consumption significantly,

but could pose a demand issue considering the sharp increase and decrease of the event.

Building 4 begins an analysis of the San Jose buildings, which operate in a milder cli-

mate and consist of office space only, compared to Richardson’s lab/office combined

buildings. Building 4 shows a much smoother operation signature, with small sched-

uled HVAC events at 4:00 a.m. and 9:15 p.m., along with dips at 7:30 a.m. and 7 p.m.

These dips were later discovered to be the result of daylight sensing exterior lighting,

turning on at sunset and off at sunrise. Specifically, exterior lighting events occur at dif-

fering times throughout the year and hinders the seasonal component, but can be iden-

tified and addressed using the derivative method and is described in depth in Chapter

5. Building 5 displays an extremely smooth operation signature throughout each day

of the week, indicating efficient building operation, although a high usage into the late

hours of the day shows a lack of unoccupied HVAC set point changes in the evening.

The introduction of such set point changes would allow HVAC units to shut down in the

evening, saving substantial amounts of electricity. Lastly, the daily operation signature

of Building 6 shows an operation unlike any of the other building’s in shape, but also has

HVAC events from 4:30-6:00 a.m., 5 p.m., and 8 p.m. In summary, all of the building op-

eration signatures subsetted by day of the week indicate various characteristics in each

building and allow for quick, insightful, and quantifiable analysis.

The building data can be further subsetted into heating and cooling seasons, heat-

ing season corresponding to the months of December-February, while cooling season
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Figure 4.5. Cooling and Heating Season Climate Temperature Differences -
Richardson, TX and San Jose, CA

includes June-August. Further included in the subsetting criteria are temperature con-

straints to ensure outliers are omitted, such as unusually warm heating days. The crite-

ria is set using a full day (96 data point) mean temperature and the correct temperature

ranges are computed separately for each climate. Figure 4.5 shows the large discrep-

ancy between the two climates and the need for individualized temperature constraints.

Richardson shows extremely high cooling season temperatures, as well as colder heat-

ing season temperatures, while San Jose displays a mild climate and a much smaller

difference between cooling and heating season temperatures. Considering these val-

ues Richardson cooling season is defined as having a day mean temperature above 70F

(21.1C) and heating season below 65F (18.3C), while San Jose cooling season is above

60F (15.6C) and heating season below 60F.

Through subsetting heating and summer seasons for Richardson buildings and com-

puting the day of the week classical time series decomposition results in Figure 4.6 and

reveals unique insights into cooling/heating season operation signatures. First, all heat-

ing and cooling season day operation signatures show drastically different shapes, cool-

ing season having smooth and rounded features and heating season exhibiting largely
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square features. Peaks in the cooling season months for all buildings occur at approx-

imately 1:00-3:00pm, while heating season peaks occur at 6 a.m. These difference in

times of peak usage with different temperature operation signatures strongly support

the events are due to HVAC. This deduction was verified with the building manager.

Cooling season operation signatures more gradually approach these peaks, while heat-

ing season shows a sudden jump in energy usage followed by a constant linear decline

in usage throughout the rest of the day. All buildings also show an earlier turn on for Fri-

days in heating season operation signatures only, indicating a difference in the building’s

schedule for Fridays. Building 2, unlike Building 1 and 3, shows a much more constant

usage in cooling season months, and also demonstrates a variable load during weekend

operation signatures, indicating continued HVAC usage in weekend operation signa-

tures. Overall each building shows a distinct difference in magnitude between cooling

and heating season operation signatures. This difference indicates the relative energy

requirements of the heating versus cooling systems in the building, and identifies the

building as having electric heating sources due to the larger heating season magnitudes

of usage. Additionally and as expected, during cooling season operation signatures,

more energy is consumed during warmer times of the day (i.e. mid-afternoon), and sim-

ilarly during the heating season, less HVAC is used during these mid-afternoon hours,

also due in part to occupancy induced thermal load. Even more, this supports the peak

usage time of 6 a.m. for heating season, the coldest time of the day, and 8 a.m., where

morning arrivals lead to higher infiltration rates. Whereas the cooling season peaks are

throughout the interval from 1 p.m. to 3 p.m., the warmest parts of the day. Interestingly,

the HVAC also turns off in a staged manner in Building 1 during heating season months
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Figure 4.6. Cooling and Heating Season Daily Operation Signatures for
Richardson, Texas Buildings

as indicated by the staged ramp down of energy consumption. This, too, was verified by

the building manager.
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Figure 4.7 continues the cooling/heating season daily operation signature analysis

for Buildings 4-6. Building 4 shows a slight difference in shape, having less blocky fea-

tures in heating season operation signatures, yet also more defined turn on and turn off

HVAC events. Building 5 shows very similar operation signatures throughout, except for

an evening turn on, necessary for colder temperatures heading into night hours. Build-

ing 6 displays a much smoother heating season operation signatures than cooling sea-

son, ramping constantly through the morning in the heating season. The building also

shows a differing late turn off time from cooling to heating seasons, turning off at 8 p.m.

in the cooling season and 7 p.m. in the heating season. Overall each building shows

a much higher magnitude of consumption during the cooling season months, indicat-

ing non-electric heating and electric cooling systems, which was verified by the building

manager.

To ensure that the previously described insights are significant, the uncertainty of

each building time series data sets is assessed. In a classical time series analysis the

random component of the decomposition captures the error in the analysis. For each

decomposition, the uncertainty, µ, is computed by: µ = σ/
p

(n), where σ is the stan-

dard deviation of the random component and n is the number of days in the analysis.

Table 4.1 reports the uncertainty for each building classical time series decomposition.

In most cases the uncertainty is less than 2 kWh giving confidence that the insights of

each signature are not the result of noise in the data. Those buildings with higher un-

certainties also show relatively higher magnitudes in operation, therefore the relative

uncertainty is still significantly low. These analyses are computed using two years of

data and result in n values of approximately 200 days after subsetting. If the analyses
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were computed on larger datasets, such as 4 years of data, uncertainties would be fur-

ther minimized and confidence of building operation signature insights increased.

Building Heating +/- kWh Cooling +/- kWh
Building 1 0.61 1.46
Building 2 2.93 1.53
Building 3 1.17 1.76
Building 4 1.15 0.65
Building 5 1.56 1.73
Building 6 0.65 0.45

Table 4.1. Uncertainty Quantification for Each Building Time Series
Heating/Cooling Operation Analysis

The heating/cooling season time series analysis is summarized in Figure 4.8 on all six

buildings. Due to varying magnitudes of consumption, between office buildings and lab

spaces, each building operation signature is shifted and normalized to values between

0-1. Additionally, each building is normalized by its largest operation signature in either

heating or cooling season conditions, allowing for quick heating/cooling season com-

parisons. Each individual consumption data set provide multiple insights and could

be studied at length, but a few comparisons are particularly striking. The first comes

in the magnitude of the operation signatures, as described earlier, in cooling/heating

season conditions. Buildings 1, 2, and 3 (Richardson buildings) show large consump-

tion in heating season conditions, while Buildings 4, 5, and 6 (San Jose) consume most

in cooling season operation signatures. Again, this indicates electric heating among all

Richardson buildings, while natural gas heating and electric cooling among San Jose

buildings. There are also apparent differences in scheduling of the Richardson build-

ings, particularly in the evening where distinct time differences in HVAC turn offs are

seen. Finally, overall shape differences among buildings show differences in occupancy
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Figure 4.7. Cooling and Heating Season Daily Operation Signatures for San
Jose, California Buildings

and size as in Building 5 compared to Building 4, as well as between buildings of dif-

fering uses, such as the blocky operation signatures of lab buildings (Richardson) and

smooth occupancy driven operation signatures of office buildings (San Jose).
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Figure 4.8. Daily Operation Signatures of All 6 Buildings in Cooling and Heating
Conditions Normalized to each Building’s Peak Season Operation

Solar irradiance is known to impact the thermal loads on buildings12,58 and by ad-

ditionally subsetting mean daily solar irradiance into sunny and cloudy days, the im-

pact of irradiance can be determined. In cold heating season temperatures, building’s

heating loads are lessened during high solar irradiance days compared to low solar irra-

diance conditions. A cold heating season day is defined as having a mean temperature

less than 48F (8.9C), while a sunny day is defined with a mean solar irradiance above

210 W /m2 and a cloudy day as less than 70 W /m2. The mean solar irradiance is cal-

culated considering all 15-minute data points, including night values (0 W /m2). Both

the temperature and solar irradiance constraints were identified to allow for at least 10

days to pass each criteria set, create a large distinction between sunny and cloudy days,

and enable an accurate time series decomposition. Figure 4.9 shows Building 1 daily

operation signatures with varying daily solar irradiance on the left (µ = ±1.84kW h for

sunny, µ = ±1.73kW h for cloudy) and the associated average solar irradiance (W /m2)

vs. time of day. The building operation signature is computed using the seasonal com-

ponent plus the mean of the trend values to account for magnitude differences. Mean

trend values are 407±17kW h and 416±35kW h for sunny and cloudy days respectively.
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Figure 4.9. Left: Operation Signatures of Cold Heating Season Days in Cloudy
and Sunny Weather for Building 1 (µ=±1.84kW h for Sunny, µ=±1.73kW h for
Cloudy) Right: Average Solar Irradiance for Sunny and Cloudy Days

The figure shows that during cloudy days, much more overall energy is required to main-

tain the set point, while the sunny days tail off in consumption throughout the day as

the solar irradiance assists in contributing heating load. Computing this difference be-

tween the signatures show cloudy days consume 1.2 MWh ($84) more than equally cold

sunny days. Also, the lower morning usage for cloudy days and higher morning load

for sunny days shows the effect of night cloud cover maintaining higher temperatures

as compared to clear nights. Overall, these observations give insights into a building’s

solar-thermal load, which may point to opportunities for energy savings by using win-

dow shading accordingly during sunny days.
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5 Disaggregation

One of the toughest challenges of analyzing building electricity consumption data is

the inherent mixing of several types of consumption components in the data45. Com-

mercial building electricity data consists of many electricity signals, such as baseload,

HVAC, plug load, and exterior lighting; where baseload is the minimum electricity con-

sumption required for a building (e.g. 24-hour lighting and security/monitoring sys-

tems), HVAC includes heating, ventilation, and air conditioning electricity consump-

tion, plug load is the electricity consumed by occupant activities (e.g. computers, refrig-

erators, copiers, televisions, interior lighting, etc.), and exterior lighting includes light-

ing used for parking lot or security lighting at night. Singularly each electricity con-

sumption component can provide a multitide of insights, but arriving at this data in a

disaggregated form has conventionally required the employment of special sensors or

load monitoring systems.45,46. Using EDIFES, without the need for additional sensoring

or metering, disaggregation of the total electricity consumption into its various compo-

nents can be achieved. This section describes the progress made in disaggregating the

building electricity data, including the disaggregation of exterior lighting, HVAC, and

occupancy based plug loads in buildings.
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5.1 Exterior Lighting Disaggregation

In some cases, exterior lighting loads are included in building electricity consumption

data. Exterior lighting may include security, parking lot, or display lighting systems

which are only necessary in dusk, dawn, and nighttime hours. These lighting systems

also tend to be significant load contributors due to vast surface area of coverage needed.

Two buildings, 3 and 4, contain exterior lighting. Figure 5.1 depicts a sinusoidal line

from the derivative analysis on electricity consumption produced by system_finder()

throughout the two year span of Building 4. Looking more closely, a similar sinusoidal

trend is demonstrated by plotting the sunrise and sunset times of each day. This was

determined through the EDIFES sun_tagging() function which uses the function sun-

rise.set from the package StreamMetabolism59, and allows for cross referencing of the

turn on/off events with the times associated with the sun rising and setting. Using a sim-

ilar derivative method the EDIFES function ext_light_finder() detects whether a building

demonstrates exterior lighting. Just as in the derivative analysis, standard deviations are

identified, but only on an hour interval centered at the sunrise or sunset time of each

day. For example, if the sunrise occurred at 6:30 a.m. the function will search for a "turn

off" event from 6-7 a.m. Each time a "turn off/on" event occurs during a sunrise/set

interval, the occurrence is tallied and the overall occurrences are divided by the total

number of days in the data set to determine the frequency. When the finder sees over a

75% frequency from both the sunrise and sunset occurrences the building is determined

to possess exterior lights. Figure 5.2 shows the energy consumption of Building 4, and

highlights the lighting events in the building of which are identified by ext_light_finder().

Once identified as having exterior lighting, the data is passed on to the EDIFES func-

tion light_value(). The function analyzes all of the occurrences and aims to determine a
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Figure 5.1. Building 4 Turn On and Off Events, Standard Deviation ±1

distinct value for the exterior lights. This determination is surprisingly complex for mul-

tiple reasons: 1) the lights turn on and off opposite of the current electricity consump-

tion trend (i.e. the morning consumption of a building is ramping up in use, but as the

sun rises the lights turn off, a decrease in use, mixing the two results) and 2) consump-

tion is time integrated and the "turn on" in the middle of one interval will be observed

over two intervals (i.e. if 60kW lights turn on at minute five of the 15 minute interval

they will be seen in two consecutive energy consumption data points as an increase of

5 kWh in the first, and another 10kWh in the second - this is "carry over"). Therefore,

considering the combination of these two properties, a significant and varying portion

of the light load is masked in the data - meaning only perfectly timed, with no other
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Figure 5.2. Building 4 Total Electricity Consumption with Exterior Lighting
Events Identified

loads turning on or off in the interval, lighting events could be read in full in one time

step. This then requires that the lighting event occurs over at least a range of two inter-

vals. However, after much analysis it was determined that all lights do not turn on/off at

the same time. They respond to independent lighting sensors, further opening the time

interval to expect observing lighting events and also allowing a larger window for loads

of other equipment to mask the lighting events.

Considering the multiple issues with determining the value of the lights, a statistical

approach was taken. The values of these lighting events are aggregated from 30 minutes

before and after the sunrise/set time to account for differing turn on/off times of the

light banks, and also to account for "carry over" in the time integration of consumption.
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Additionally, due to the opposite direction of energy consumption, larger changes in

energy observed are actually those of lighting events that occurred at intervals when the

least amount of other loads interfered. Therefore, the large values are deemed closer

to the actual exterior lighting value than other observations. The top quartile of the

observations were determined to qualify as the larger values for analysis and the median

value of the quartile is reported as the value for the lights. These constraints were created

after numerous disaggregation attempts, where the top quartile median was found to

minimize the error in disaggregation. For Building 4, the value is 11kWh per 15 minute

interval, which corresponds to a 44kW load.

Once the lighting value is determined, the last function ext_lighting_disag(), takes

in the value and disaggregates the lights from the total electricity consumption data.

The same issues persist in the disaggregation as did in the determination of the value

of the lights, and to account for them, a weighting approach was taken to disaggregate.

Looking 30 minutes before and after the sunrise or sunset, the function identifies all

positive/negative energy changes (depending on the nature of the event, turn on/off

corresponds to sunset/rise respectively) and sums the values, this sum is the weight de-

nominator. Then the value, 11kWh for example, is distributed among the positive energy

change events (for lighting turn ons). This is done with each event’s energy change, di-

vided by the sum of the weight, and multiplied by the value. For example, a sunset, "turn

on" event occurs, over the interval 30 minute prior and 30 minute after, three positive

"turn on" energy changes were found, 3, 2, and 5 kWh, the sum of which is 10kWh. At the

event where 3kWh was observed, the lighting value 11∗3/10 is calculated, the next step

would add the 2/10 weight, followed by the 5/10 weight, finally coming to the total value

of the lights, 11kWh. This process is automatically computed and Figure 5.3 shows the
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Figure 5.3. Building 4 Electricity Consumption with Exterior Lighting Disaggregated.

automated lighting disaggregation. It is worth noting that at the points of disaggregation

there appear no artifacts (bad data) from removing the lights and ext_light_finder() no

longer identifies the lights in the data, validating this method.

Now that the light values are known, the exact electricity consumption is determined

for an entire year, as well as the cost. At a load of 44kW the lights consume approxi-

mately 193 MWh per year or $38,500 at $0.20/kWh in San Jose, CA. Provided the lighting

type of the building, a quick calculation can be made to assess a lighting retrofit. In this

case, if the lights are currently halogen (25 Lumens/Watt) and an LED (45 Lumens/Watt)

retrofit were considered, the building owner would save approximately 86 MWh and

$17,100 per year if lumens were kept constant, or if HID lighting were considered (120

Lumens/Watt) 153 MWh and $30,500 per year in savings. This also allows for quick re-

turn on investment calculations, such as, a 3 year return on investment would require
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Figure 5.4. Building 4 Day of the Week Time Series Figure Before Lighting Dis-
aggregation on the Left and After on the Right.

the retrofit to be less than $51,300 or $91,500 for halogen and HID respectively. Finally,

this disaggregation step is incredibly important as the variability in time of the lights se-

verely hurts system identification and other analysis that look for scheduled patterns in

the data. Figure 5.4 shows the significant difference between the day of the week time

series analysis before and after lighting disaggregation. The operation of the building

after the disaggregation now exhibits the true HVAC and occupancy tendencies of the

building, and allow for new analyses to be applied.

5.2 Heating Ventilation and Air Conditioning Disaggregation

HVAC is the single largest component of a building’s energy consumption, and conse-

quently the largest opportunity for energy and cost savings1. However, HVAC is also very

difficult to accurately disaggregate from the largely unpredictable occupancy loads of a

building, and each building’s response to weather characteristics typically vary drasti-

cally. Considering these hurdles, weather data and observed scheduling remain the best

variables to attempt disaggregation when submetering countless equipment loads are
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not an option. In this section an approach is presented to model HVAC usage vs. tem-

perature, while accounting for random occupancy/plug load behaviors.

As shown earlier in the "Early Data Analysis" chapter, temperature and energy do

not correlate well when directly compared (current interval temperature vs. electricity).

They do, however, continue to increase as various constraints are applied to the data

sets, one of those being mean daily electricity consumption against mean daily temper-

ature, but this analysis also has its own flaws. It uses mean daily values that associated

the temperatures in the evening with the electricity consumption earlier that morning,

a non-physical comparison. There are also other factors in a building, such as schedul-

ing and occupancy, and both are a function of the "time of day" and not temperature.

These can be difficult issues to deal with as HVAC, the most correlated and only signif-

icant causal relationship to temperature, changes set points throughout a day and into

the weekends. This leads to a discontinuous HVAC energy consumption, which obvi-

ously does not correlate well to a continuous temperature data set. Finally, buildings

do respond to temperature, but due to large thermal masses, they respond to the tem-

peratures that occurred many hours before. Therefore, it was found that the aggregate

of weather characteristics define a building’s HVAC operation at far higher correlations

than compared to a singular lag.

The two issues for disaggregating the HVAC component from the total electricity

consumption can be summarized as such: 1) each time interval (each day includes 96)

presents its own set point value and occupant tendencies and 2) each time interval re-

sponds to its own distinct accumulation of weather characteristics. The second may

be described as an accumulated lag of the building’s response to weather. To compute
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these lags, EDIFES uses the function lag_stat() which determines the mean value tem-

peratures for a specified lag. The function computes the "lags" for all values 1-96. For

example, a lag of 1 will report the mean of the current and last temperature, while 96 will

report the mean temperature of the current and past 96 (a full day) data points. Again,

this is done for each time interval considering each of the 96 lag possibilities.

The analysis then computes how well each lag, with each time step, is able to linearly

model energy versus temperature. This is done by taking one time interval at a specific

lag and examining the distribution of mean temperatures computed. In over 700 days of

data, a significant amount of similar temperatures occur and allow for the grouping of

those similar events. The next EDIFES function in the analysis is hvac_explicit(), (named

for determining the explicit temperature contribution for energy compared to taking

the mean daily temperatures and mean daily energy consumption, an implicit solution)

which groups the data into similar temperature ranges of at least 30 days, satisfying the

central limit theorem of statistical significance57, and minimizing noise in the data. For

example, the 30 hottest temperatures observed (from the lag at a particular time inter-

val) are grouped together, then the next 30 hottest, and so on, until all days have been

accounted for and grouped, resulting in approximately 20 groupings. The mean tem-

perature of the group is recorded as well as the mean energy of the group. Due to the

number of groupings the range of temperatures in each group from the mean value is

less than 1 degree Celsius (except in some cases at the very hottest and coldest group-

ings where outliers may exist) - demonstrating the similarity in temperature among each

group.

These mean temperatures and energy values can now be modeled through a linear

regression. Figure 5.5 shows the values of Building 3 at midnight and at 12pm, using a
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Figure 5.5. Grouping Plots at Midnight and 3 p.m. for Building 3. The blue line
displays the linear regression best fit.

lag of 4 hours. Both plots in the figure show a very linear progression of the data, having

R-Squared values above 0.9. This result is far better than any other analysis using simple

correlations (the R-Squared value is the correlation squared in a linear model, therefore

the correlation is much higher than 0.9 and is considered a significantly strong rela-

tionship55).This high correlation is achieved because each time interval is considered

independently, therefore ensuring HVAC characteristics such as set points are the same

at the same time of day. Conducting the analysis across the 30 days allows for a nor-

mal distribution that minimizes the effects of random occupancy loads. The function

hvac_explicit() computes a linear regression for each data set and reports the adjusted

R-Squared value, or fit, of the model.

EDIFES then uses the function thermal_lags() to accumulate all of the R-Squared

values associated with each and every time interval and lag combination. The output

of the function is then a 96 x 96 matrix (96 intervals and 96 lags) holding all of the R-

Squared values for each lag at each time interval. Various approaches can then be taken

to determine the most appropriate lag for a building. One solution is to choose one

singular lag that results in the highest sum of its 96 R-squared values. Second is to choose
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Figure 5.6. Building 3 & 4 Highest R-Squared Lags for each Time Interval of the Day

Figure 5.7. Building 3 & 4 R-Squared Values for the Associated Best Lags of each
Time Interval.

the lag value (mode, median, or mean of these values) that is found to be the highest

correlated value for each time and apply it over all time intervals. Third, and the option

that is chosen in this analysis, is to use the best lag for each time interval separately.

Figure 5.6 and Figure 5.7 show the best lag value for each time of the day for Building 3

and 4 respectively.

Of particular interest are the lags values in Figure 5.6 for Building 3. During night or

unoccupied times the building has a lag of about 23 hours, but during occupied times

the lag changes to about 18 hours. Further, the lag drops to a less than 2 hours for certain



Disaggregation 66

times, particularly from 4-6 a.m. - the time at which HVAC systems turn on in Building 3.

Due to the turning on of HVAC systems, largely air handlers, the current ambient tem-

perature is much more important and correlated to energy as compared to any other

time in the day. Air handlers primary purpose (and largest corresponding electricity

load) is to heat and cool air and thus, the HVAC consumption is at its maximum during

the "turn on" times. This therefore results in high correlations between electricity usage

and current temperature at this particular time of the day. Then after about 7/8 a.m. the

building has established near steady state conditions once again and cools/heats at a

lower rate that is more indicative of the overall thermal load on the building, accounting

for the past 18 hours. The same phenomenon occurs during the unoccupied night op-

eration, although the difference of 5 hours of thermal lag is a result of the fact that a set

point change (occupied to unoccupied) occurs in the evening. Building 4, on the other

hand does not directly show this, but does show a more defined overall lag, as all lags lie

between 11-19 hours. Figure 5.7, nonetheless, shows an interesting trend for Building 4,

which uncovers temperature set point change times at approximately 4 a.m. and 9 p.m.

due to the shifts in the R-Squared data. The set point changes are further discussed later

in this chapter.

EDIFES can now account for the effective thermal lags in the buildings, and us-

ing function best_lags() determines the best lags for each time interval and passes this

knowledge to hvac_explicit_2() which recalculates the models for each time interval,

only using the best lag for that interval. The output of this function includes 96 linear

regression models, one for each time of the day. Each linear model includes an intercept
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Figure 5.8. Building 4 HVAC Lag Regression Energy Consumption as an output
of Best Lag Temperature Data

and slope for the regression, with the slope holding information on the relationship be-

tween energy and temperature in kWh/C. The slope, however, is different for each inter-

val and for conciseness, Table 5.1 displays the mean slope, or HVAC energy response to

temperature, for each building. Building 1 displays its negative relationship with tem-

perature, with -53.24 kWh/C consumed per 15-minute interval, while Building 3 shows

the largest association with a 60.21 kWh/C response. Unsurprisingly, the magnitude of

each building’s slope trend with relative buildings size, with the exception of Building 6.

Building 6 is the fourth largest building, but has the smallest response in electricity to

temperature.

kWh Per Degree C
Building 1 -53.24
Building 2 44.84
Building 3 60.21
Building 4 23.38
Building 5 33.54
Building 6 17.18

Table 5.1. Mean Slope of Lag Regressions, kWh Per Degree C
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Figure 5.9. Building 4 HVAC Lag Regression Energy Consumption as an output
of Smooth Temperature Data

Finally, the function hvac_explicit_disag() can then take in the models and the cor-

responding temperature lag values for any given day and output the associated HVAC

electricity consumption. Figure 5.8 displays the output HVAC electricity consumption

for various temperature data sets, of which are not continuous as each value is associ-

ated with a differing lag. Figure 5.9 shows the output if smooth temperature data sets

were applied to the model, consequently the energy output becomes jagged due to the

incorrect temperature lag values. These electricity consumption curves, however, are

not just the HVAC, they do still include typical occupancy plug load. One approach for

disaggregating the plug and baseload is to take the lowest energy consuming tempera-

ture condition (either hottest or coldest values, in this case coldest for Building 4) from

the HVAC electricity consumption to result in the variable HVAC component. Unfortu-

nately, this method results in unsatisfactory results for a substantial amount of days, but

does work for a few days in the data set. The issue arises from situational occurrences

of HVAC and plug load. For example, some nights HVAC units will turn on at atypical
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Figure 5.10. Building 4 Disaggregation Using HVAC lag, exterior lighting, and
HVAC event disaggregation functions

times. Therefore, more work must be done to adjust for the atypical situational occur-

rences demonstrated by the HVAC data. Disaggregation for Building 4 is shown in Figure

5.10.

Figure 5.10 is developed using the HVAC lag, exterior lighting, and HVAC event dis-

aggregation functions. The exterior lighting function is used to disaggregate the lights

followed by the HVAC functions. However, the second HVAC function, HVAC_event(),

is currently not scalable to entire data sets and other buildings. Further research into

refining the algorithm promises to expand its use to entire data sets of various types

and allow for automated disaggregation of building energy. Despite the limited appli-

cability, results from disaggregation indicate the methods used create reasonable find-

ings. In particular is the plug load electricity consumption. The plug load is determined

from taking the total energy consumption and removing the HVAC, exterior lighting, and



Disaggregation 70

baseload components, therefore the plug load is entirely derived from the other func-

tions. The plug load exhibits a doubled peaked behavior, rising in the morning, then

dipping around noon, followed by a second peak before decreasing through the after-

noon to evening hours. This plug load operation is identical to what is seen widely in

literature sources for occupancy levels in office buildings60–62. Where occupancy drops

around noon as employees leave the building or pause their current work - therefore

decreasing the plug load. Following lunch at noontime, the plug load rises again as em-

ployees resume work in the afternoon, succeeded by a final decrease as employees leave

for the rest of the day. In conclusion it is believed that the HVAC lag and event approach,

along with exterior lighting disaggregation provides promising results for future investi-

gation.

5.3 Set Point Identification

In commercial buildings, most HVAC units are programmed with varying internal set

points for occupied and unoccupied times to minimize energy consumption and max-

imize employee/customer comfort. Considering the knowledge gained on HVAC in the

previous section, the internal set point changes can be determined. The HVAC lag mod-

els provide the change in energy consumption as a function of temperature, and with

knowledge of the energy difference at a set point change, the set point temperature dif-

ference was found.

Two functions have been created to detect the set point change simply given the data

and models developed by HVAC lag. EDIFES function set_point_finder() applies a time

series analysis on the entire dataset and uses the seasonal component to determine if
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Figure 5.11. Set Point Methodology, Building 4 Seasonal Time Series and First
and Second Derivative Plots showing spikes indicating set point events

a set point change exists. By analyzing the seasonal component, overall characteristics

can be found, such as a daily set point change. Figure 5.11 shows the seasonal compo-

nent and a jump in usage can be seen in the weekday consumption early in the morning

and late in the evening. To identify this event the second derivative of energy is taken to

find sudden spikes in the time series energy consumption. The function then takes the

mean and standard deviation of the second derivative and pin points the significant oc-

currences, with one last set of criteria - a morning set point will occur before noon and

will result in a positive change (i.e. disregard negative spikes) and the evening set point

will occur after noon and will result in a negative change (i.e. disregard positive spikes).
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Using this analysis set_point_finder() determines all of the set point change times dur-

ing a day and reports the following logic: "Yes/No - Weekday Set Point Change", "Yes/No

- Multiple Weekday Set Point Change", "Yes/No - Weekend Set Point Change", "Yes/No

- Multiple Weekend Set Point Change". Table 5.2 shows the output from the function

identifying all set point information and identifying 4 a.m. and 9:15 p.m. as set point

changes. Following set_point_finder(), the function set_point_value() takes in the over-

all data, information from the previous set point function, and the models from HVAC

lag regression to determine the internal set point change. The set point change for Build-

ing 4 was reported to be 3.6F, or 4F as confirmed by the building manager.

Set Point Finder Results
Yes - Weekday Set Point Change
No - Multiple Weekday Set Point Change
No - Weekend Set Point Change
No - Different Weekend Set Point Change
4
21.25

Table 5.2. Set Point Finder Output - Identified Weekday Set Point Change
at 4 a.m. and 9:15 p.m. for Building 4
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6 Equipment Identification

Disaggregation aims to break up the main load components from the overall elec-

tricity curve, and in many cases go further into determining what specific pieces of

equipment make up each component. Equipment identification is the next step be-

yond disaggregation and allows for the pin pointing of specific equipment for analysis

to determine equipment performance over time. However, based on the fact that equip-

ment is a subcomponent of a disaggregated curve of the total consumption, extracting

information on equipment can be quite complex. This section explores a method for

extracting values of equipment within the building electricity consumption data.

6.1 Method of Equipment Finding

Building electricity consumption is time integrated, as described in detail in Chapter 2,

Early Data Analytics, resulting in mixed consumption of various equipment. One ap-

proach to finding equipment is to simply analyze the raw derivative values. Tabulating

the data for unique derivatives, only 194 unique derivative values are found (307 if neg-

ative and positive pairs are not considered as the same) - considering the 70,000+ ob-

servations this number is relatively small. Figure 6.1 shows the 194 derivatives and the

amount of times they occur in the data set.



Equipment Identification 74

Figure 6.1. Building 1 Occurrences of Distinct Changes in Electricity

Although, 194 values are significantly small, more constraints are required to de-

termine real equipment values rather than mixed values - as is the case in most of the

derivatives. To find real equipment values one can leverage the knowledge that a piece

of equipment turning on/off will have an impact on the current time interval and also

on the following interval. In the rare cases where no other equipment turns on/off the

information found in the second interval can be used to determine the value of the piece

of equipment. If a piece of equipment turns on during an interval it results in a partial

energy change (in that interval) for the load of the equipment, while the second interval

change is the full value of the equipment over 15-minutes. If no other equipment turns

on during that 30-minute time frame, the second interval can be directly converted to a

power value for the equipment, and - more importantly - the values of this equipment

can be used to back calculate when the equipment turned on in the first interval. For

example, 10kWh is observed in the first interval and 15kWh in the second interval. The

second interval can then be calculated to be a piece of equipment the size of 60kW, and

the first interval can be back calculated to show the piece of equipment turned on at
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Figure 6.2. Building 1 Occurrences of Detected Equipment by "Turn On/Off" Wattages

minute five of the first interval. This time is useful as it provides another means of deter-

mining if a piece of equipment is real. If the equipment did not turn on at an expected

interval of the electricity meter, then it does not exist. An expected interval of the meter

is one which occurs at the frequency at which the meter operates. In this analysis only

equipment which occurred at a half second interval (in 15 minutes this is 1,800 possible

turn on/off intervals) are considered real occurrences. Therefore, this analysis requires

two criteria: 1) two consecutive positive or negative energy changes occur and 2) a "real"

interval turn on time must be observed, where a real turn on interval is one that occurs

at a half second interval.

6.2 Identification of Equipment

Performing this analysis on Building 1 and omitting equipment that did not turn on/off

at the expected intervals gives the Figure 6.2. The first plot shows all of the determined

pieces of equipment - a total of 51 distinct values of equipment. The second narrows

the criteria to equipment that were observed at least 10 times - lowering the total to
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24 distinct values. Tables 6.1 and 6.2 show the values of the equipment found and the

number of occurrences they were observed.

Equipment Wattage (1) Occurences (1) Equipment Wattage (2) Occurences (2)
9000 1127 36000 99
7200 1083 43200 51

10800 1057 45000 48
5400 944 54000 32

14400 855 25200 28
16200 847 64800 18
18000 679 72000 14

3600 603 90000 13
21600 491 37800 13
27000 317 135000 12
32400 184 81000 10
28800 121 48600 10

Table 6.1. Building 1 ’Turn On’ Equipment by Wattage and Occurrences

Equipment Wattage (1) Occurences (1) Equipment Wattage (2) Occurences (2)
-7200 1344 -36000 171
-9000 1323 -28800 154

-10800 1279 -43200 89
-14400 1082 -45000 68

-5400 1039 -25200 47
-16200 914 -54000 40
-18000 800 -64800 24

-3600 713 -72000 23
-21600 632 -37800 19
-27000 422 -48600 16
-32400 251 -90000 10

Table 6.2. Building 1 ’Turn Off’ Equipment by Wattage and Occurrences

The meter resolution for Building 1 was found to be 1.8kW, but the values (except

for at the low wattage end) do not jump intervals by 1.8kW, but by larger increments. In

fact, one multiple stands out among the rest, 9kW. Equipment values are seen from 9kW

up to 135kW, ascending in 9kW intervals, indicating that the building may have multiple
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pieces of the same equipment at a value of 9kW or that a piece of equipment can be op-

erated at different consumption levels (e.g. a variable speed drive). Figure 6.3 displays

the 9kW hour multiple values (from 9kW - 81kW) by their hour of occurrence vs. the

date they occurred, as well as indicating the magnitude through a color scale. Looking

at Figure 6.3, lines across the building’s "turn on" times from the derivative analysis are

present showing that the pieces of equipment are most likely related to the HVAC sys-

tem. Knowing that the 9kW pieces of equipment are related to the HVAC system now

allows for further analysis into the non-"turn on/off" time occurrences and may help in

further disaggregation of Building 1 HVAC. Finally, this analysis was constrained due to

the meter resolution of 1.8kW. For buildings that exhibit higher resolutions, additional

and smaller, equipment may be identified.
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Figure 6.3. Building 1 Occurrences of Equipment which corresponds to a Mul-
tiple of 9kW (27kW - 81kW). Top shows the "Turn On" Times of Equipment and
the Bottom shows the "Turn Off" Times of the Equipment.
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7 Discussion

EDIFES is capable of cleaning, processing, and computing analytics on buildings to

identify building markers and characteristics, as well as make various energy recom-

mendations. This work focused on the contributions to EDIFES in Early Data Analysis,

Derivative Analysis, Classical Time Series Decomposition, Disaggregation, and Equip-

ment Identification. In each section, functions and characteristics were identified to

build the EDIFES building marker library.

7.1 Early Data Analysis

Early analysis displayed various issues with the data, such as missing data, mean shifts,

and merging three data sets. Functions were developed to automatically handle the var-

ious issues and produce clean data primed for analysis. Through analyzing the data with

various correlation plots and constraints, it was determined that simple correlations be-

tween building electricity and temperature do not identify strong statistical relation-

ships. Those relationships investigated included current interval electricity vs. temper-

ature (-0.44), electricity vs. lagged temperature (-0.5), and mean of day electricity con-

sumption vs. mean of day temperature (-0.56). One of the problems in finding a strong

correlation was a result of differing HVAC systems in buildings. EDIFES is now able to
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classify the buildings by their HVAC system types as described in Table 2.9, as well as de-

termine the temperature change point in their operation. These findings helped justify

approaches to various analyses following. Another marker was identified in the build-

ing’s meter resolution, determined for all buildings in Table 2.3, which now provides

information on the size of equipment that can be disaggregated.

7.2 Derivative Analysis for

System Identification

The derivative analysis provides a quantitative method for extracting information on

building systems, identifying their relative size and more importantly their scheduling.

Derivative analysis is able to identify both stationary systems, such as "turn on/off"

times of HVAC systems, but also non-stationary systems such as exterior lighting - a

difference between time series decomposition which can only detect and quantify sta-

tionary systems. These systems, both their schedules and values, signify building mark-

ers which are noted for each building through the function system_finder(). All building

systems can be found in Appendix B and C.

7.3 Time Series Decomposition for

Building Daily Operation Signatures

Classical time series decomposition of 15-minute building electricity consumption data

provides a visual and quantitative understanding on how buildings operate in specific
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conditions. Similar to a derivative analysis, time series decomposition identifies build-

ing scheduling showing "turn on and off" times in the seasonal component. Addition-

ally, classical time series decomposition is able to characterize the operation of the build-

ing before, after, and between those events, which is necessary for quantifying the effect

of each. This analysis also provides a means for "searching" the data with various con-

straints to determine building tendencies through different days of the week, cooling

and heating season operations, and to examine how solar irradiance impacts a build-

ing. Further questions and constraints may be added to the data for analysis, although

statistical significance must be maintained: days > 30 as per the central limit theory57,

and 3-4 years (or more) of data may be required to ask questions of increased specificity.

Both an advantage and disadvantage of this analysis is its ability to minimize random

behavior. In most cases, the incorporation of over 30 days of data per criteria minimizes

random occupancy behavior, but it fails to identify non-stationary systems such as ex-

terior lighting for which a derivative analysis may be necessary.

The seasonal component specifically is, by itself, a marker of the building, as it could

be described as the building daily operation signature. The building daily operation sig-

nature holds much information on the typical operation of a building, such as the "turn

on/off" times that are also found in the derivative analysis and more importantly the

behavior of the consumption between the "turn on/off" events. Using the electricity

values from the time series analysis, a scheduling recommendation and associated sav-

ings can be computed for building systems. In most cases presented in this thesis, the

buildings exhibited tendencies to "turn on/off" too early or late. Considering a 7 a.m. -

7 p.m. reschedule for each building the following savings are summarized in Table 7.1.

Totaling to 722 MWh and $60,200 per year in savings.
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Energy Savings (MWh) Per Year Monetary Savings ($) Per Year
Building 1 40 2828
Building 2 483 33810
Building 3 125 8757
Building 4 27 5400
Building 5
Building 6 47 9400

Table 7.1. Energy and Monetary Savings for all Six Buildings if Resched-
uled Major System to a 7a.m. - 7p.m. schedule. Note: Building 4 System
was found after Exterior Light Disaggregation.

Constraints such as day of the week, and weather values can be prescribed to the

data to determine operation signatures under other conditions. Particularly, the analysis

was able to identify graphically the difference in operation between weekdays and week-

ends, as well as between individual weekdays. The differences between weekdays can

assess the occupancy levels in a building for a certain day, or the knowledge of weekend

operation signatures can inform a manager to adjust usage parameters during unoccu-

pied times. Further constraints on the weather characteristics were applied to investi-

gate the difference between cooling and heating season operation. Cooling and heating

season operation signatures were not only different in magnitude for most of the build-

ings, but also completely different in shape. Buildings peaked their usage at different

times, depending on weather conditions and may have staged HVAC units differently as

well. Finally, irradiance criteria was added to the analysis to assess the impact of ther-

mal radiation on the electricity consumption of a building in heating seasons. It was

found that cold and cloudy days consumed 1.2 MWh ($84) more than cold sunny days,

showing a significant impact. Further analysis is required using irradiance time series to

robustly quantify the role of irradiance in building electricity consumption. In conclu-

sion, classical time series decomposition provides an additional tool for understanding



Discussion 83

and discovering new operational tendencies and building markers for which to build

specific algorithms for characterization.

7.4 Disaggregation

Disaggregation methods and functions were developed to specifically disaggregate exte-

rior lighting and HVAC. Using the derivative analysis, EDIFES was able to detect exterior

lights, determine the load associated with them, and then disaggregate them from the

total electricity consumption curve. From the disaggregation the total electricity con-

sumption was calculated, and a halogen to HID retrofit in Building 4 could see massive

savings in energy and money. Table 7.2 shows these values for Building 4, as well as

Building 3 which was also detected to possess exterior lights - these values total 412

MWh and $48,600 of savings per year.

Energy Savings (MWh) Per Year Monetary Savings ($) Per Year
Building 3 259 18130
Building 4 153 30514

Table 7.2. Energy and Monetary Savings for Buildings with Exterior Lights
Considering a Halogen to HID Retrofit.

Following lighting disaggregation, it was possible to address HVAC disaggregation.

Knowing that HVAC electricity consumption is caused by weather conditions, further

analysis was conducted to determine a relationship in weather "lags". Where building

electricity values were associated with the mean temperature of a past time frame. Using

this knowledge, optimal lags were determined for each building, and for each individual
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time interval (96 per day at 15-minute intervals). With the lags calculated, linear regres-

sion models were developed for each time interval with electricity as a function of tem-

perature. This method led to a model which can describe the electricity consumption

of a building as a function of exterior temperature. Table 5.1 displays the mean slope

of electricity consumption for each of the six buildings. These values are extremely im-

portant as they provide a base for which to continue HVAC disaggregation and also lead

to further questions to be answered. One such question is the set point change a build-

ing undergoes from unoccupied to occupied settings. Building 4 was analyzed for an

HVAC set point change and determined they occurred at 4 a.m. and 9:15 p.m. and cor-

responded to a change of 4 Fahrenheit. Further analysis can leverage the findings from

this work and create a dynamic HVAC disaggregation capability.

7.5 Equipment Identification

Just as difficult as building energy disaggregation (i.e. equipment is a subcomponent

of a disaggregated consumption data set), is the identification of equipment from 15-

minute interval data. Leveraging an understanding of time integrated consumption

data, 70,000+ observations, and that some of the observations would uniquely corre-

spond to time frames which only one piece of "turned on/off" - equipment was identi-

fied. Building 1 was analyzed in detail and using a specific set of criteria "24 pieces of

equipment" were found. Through further inquiry it was determined that many of these

pieces of equipment were multiples of 9kW and also occurred largely at the HVAC "turn

on/off" times, showing that the system is comprised of 9kW units. This knowledge is
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crucial to HVAC disaggregation and further work will investigate the occurrences out-

side of the "turn on/off" times to determine what factors prompt HVAC systems to turn

on or off.
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8 Conclusion

Energy Diagnostics Investigator for Efficiency Savings (EDIFES) has been developed

for scalable data analytics to conduct virtual energy audits on commercial buildings.

Built as a software package, EDIFES leverages data analytics applied to building electric-

ity data and readily available weather data to determine building markers, characteris-

tics, and operational tendencies. These analytics constitute derivative analysis methods,

time series decomposition, disaggregation, and equipment finding. Through these anal-

yses building systems are identified, including Heating Ventilation and Air Conditioning

(HVAC), lighting, and plug load or other equipment, with characteristics such as load

and system scheduling. Once identified, EDIFES conducts preliminary virtual energy

audits to diagnose efficiency issues, determines the impact (i.e. return-on-investment

or payback) of potential retrofit actions (e.g. rescheduling HVAC to occupied hours or

conducting a lighting retrofit), and then can be used for measurement and verification

(M&V) or continuous commissioning. The six buildings presented, from two different

climate zones, were analyzed in full through EDIFES and resulted in over a GWh/year

of energy recommendations associated with over $100,000 in yearly cost savings. Addi-

tionally, preliminary disaggregation of load components in a building, crucial for diag-

nostics and prognostics, was explored with an approach to quantify HVAC systems as
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a function of temperature. Each of the six buildings were also characterized with each

of EDIFES 40+ functions and these traits are continually documented as more buildings

undertake analysis in the hope of creating the Building Energy Genome. This analysis

requires simply a building’s utility 15-minute interval electricity data, approximate loca-

tion, and squarefootage to enable full capabilities.
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9 Future Work

The current state of EDIFES provides a base software package from which to build

further analytics and much more sophisticated processes. The first area of further work

is in disaggregation - the corner stone of building energy efficiency analysis issues. Dis-

aggregation allows analysis to dig deeper into specific components, allowing algorithms

to focus on particular characteristics. The most difficult, and most important compo-

nent of disaggregation is HVAC. This work was investigated as an approach for quantify-

ing the effect of temperature on building electricity consumption, but has yet to be fully

used in disaggregation. Irradiance must also be included in the HVAC disaggregation

model. Perhaps in a similar manner as temperature - adding a second variable to the

regression, as its significant impact was shown through time series analysis. Once dis-

aggregation of the HVAC component is finished it will uncover the plug load in a building

leading to a whole new set of plug load analysis questions and functions.

The formal creation of the Building Energy Genome must also be developed to en-

sure EDIFES can be a malleable software tool which learns from each building analyzed.

Currently, various characteristics are observed and noted. In future versions of EDIFES

these characteristics will be tied to other particular traits in the building - these traits
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may point to certain specific analyses resulting in much more sophisticated and de-

tailed virtual energy audits. EDIFES may also benefit from machine learning algorithms

to dynamically assess buildings and uncover new characteristics which may never have

been noticed otherwise.

Considering these advancements, EDIFES must be implemented entirely in a high

performance computing cluster with large data base capabilities. As EDIFES expands,

so too does computation time - currently a full analysis on two years of data requires

20+ hours of computation time on 3GB of memory using a 2 GHz dual core processor. A

high performance computation can cut this time to within minutes, necessary for mar-

ketability. Further, data bases for building energy must be adequate to hold thousands

of buildings and allow access to the entirety of the data sets for analysis. As EDIFES adds

further capabilities, each one must be tested throughout all buildings to ensure its appli-

cability. Finally, EDIFES requires a consumer friendly user interface to allow for simple

understanding of EDIFES data requirements and access to virtual energy outputs. With

data analytics as an emerging field, the capabilities described above are entirely plausi-

ble and will create a software that has the potential to save massive sums of energy and

money.
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Appendix A

Preparation of this document

This document was prepared using pdfLATEX. The (free) programs and versions im-

plemented are as follows (links to the current versions are included):

• LATEX implementation: MiKTEX 2.9

http://www.miktex.org/

• TEX-oriented editing environments: TEXStudio

http://www.texstudio.org/

• Bibliographical Database: BibTEX

http://www.bibtex.org/

and Zotero

https://www.zotero.org/

http://www.miktex.org/
http://www.texstudio.org
http://www.bibtex.org
https://www.zotero.org
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Appendix B

Appendix Figures

Figure B.1. Correlation Plot of Weather Data and Energy for Building 2

Figure B.2. Correlation Plot of Weather Data and Energy for Building 3
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Figure B.3. Correlation Plot of Weather Data and Energy for Building 4

Figure B.4. Correlation Plot of Weather Data and Energy for Building 5
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Figure B.5. Correlation Plot of Weather Data and Energy for Building 6

Figure B.6. Correlation Plot of Average Weather and Energy Data for Building 2
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Figure B.7. Correlation Plot of Average Weather and Energy Data for Building 3

Figure B.8. Correlation Plot of Average Weather and Energy Data for Building 4
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Figure B.9. Correlation Plot of Average Weather and Energy Data for Building 5

Figure B.10. Correlation Plot of Average Weather and Energy Data for Building 6
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Figure B.11. Correlation Plot of Average Weather and Energy Data of Weekdays
for Building 2

Figure B.12. Correlation Plot of Average Weather and Energy Data of Weekdays
for Building 3
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Figure B.13. Correlation Plot of Average Weather and Energy Data of Weekdays
for Building 4

Figure B.14. Correlation Plot of Average Weather and Energy Data of Weekdays
for Building 5
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Figure B.15. Correlation Plot of Average Weather and Energy Data of Weekdays
for Building 6

Figure B.16. Correlation Plots of Weather and Energy Data Above the Change
Point, Building 1
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Figure B.17. Correlation Plots of Weather and Energy Data Below the Change
Point, Building 1

Figure B.18. Energy vs. Temperature with a fitted spline and line through end-
points, Building 2
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Figure B.19. Correlation Plots of Weather and Energy Data Above the Change
Point, Building 2

Figure B.20. Correlation Plots of Weather and Energy Data Below the Change
Point, Building 2
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Figure B.21. Energy vs. Temperature with a fitted spline and line through end-
points, Building 3

Figure B.22. Correlation Plots of Weather and Energy Data Above the Change
Point, Building 3
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Figure B.23. Correlation Plots of Weather and Energy Data Below the Change
Point, Building 3

Figure B.24. Energy vs. Temperature with a fitted spline and line through end-
points, Building 4
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Figure B.25. Correlation Plots of Weather and Energy Data Above the Change
Point, Building 4

Figure B.26. Correlation Plots of Weather and Energy Data Below the Change
Point, Building 4
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Figure B.27. Energy vs. Temperature with a fitted spline and line through end-
points, Building 5

Figure B.28. Correlation Plots of Weather and Energy Data Above the Change
Point, Building 5
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Figure B.29. Correlation Plots of Weather and Energy Data Below the Change
Point, Building 5

Figure B.30. Energy vs. Temperature with a fitted spline and line through end-
points, Building 6
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Figure B.31. Correlation Plots of Weather and Energy Data Above the Change
Point, Building 6

Figure B.32. Correlation Plots of Weather and Energy Data Below the Change
Point, Building 6
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Figure B.33. Building 2 Turn On and Off Events, Standard Deviation +1/-1

Figure B.34. Building 3 Turn On and Off Events, Standard Deviation +1/-1
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Figure B.35. Building 4 Turn On and Off Events, Standard Deviation +1/-1

Figure B.36. Building 5 Turn On and Off Events, Standard Deviation +1/-1
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Figure B.37. Building 6 Turn On and Off Events, Standard Deviation +1/-1
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Appendix C

Appendix Tables

1 Derivative Analysis

Occurences Time Average dE (kWh) Frequency Energy (W)
1 690.00 00:04:45 27.84 0.91 19209.60
2 524.00 00:05:45 39.26 0.69 20572.20
3 490.00 00:05:15 21.12 0.64 10346.85
4 297.00 00:06:00 14.06 0.39 4175.55
5 260.00 00:06:45 11.78 0.34 3063.15
6 219.00 00:05:00 11.68 0.29 2557.80
7 206.00 00:05:30 13.70 0.27 2822.40

Table C.1. Turn On Events for Building 2

Occurences Time Average dE (kWh) Frequency Energy (W)
1 657.00 00:22:45 -22.28 0.86 -14639.40
2 538.00 00:17:45 -36.83 0.71 -19812.15
3 372.00 00:18:00 -14.14 0.49 -5261.85

Table C.2. Turn Off Events for Building 2

Occurences Time Average dE (kWh) Frequency Energy (W)
1 535.00 00:05:45 36.29 0.70 19415.70
2 410.00 00:06:00 13.14 0.54 5387.40
3 218.00 00:08:00 22.43 0.29 4888.80

Table C.3. Turn On Events for Building 3
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Occurences Time Average dE (kWh) Frequency Energy (W)
1 518.00 00:17:45 -22.12 0.68 -11460.15
2 393.00 00:18:00 -11.16 0.52 -4384.80
3 207.00 00:21:45 -10.43 0.27 -2159.10
4 198.00 00:06:15 -11.51 0.26 -2278.35
5 160.00 00:08:15 -19.04 0.21 -3046.05

Table C.4. Turn Off Events for Building 3

Occurences Time Average dE (kWh) Frequency Energy (W)
1 225.00 00:09:45 4.85 0.31 1090.29
2 213.00 00:10:15 4.71 0.29 1004.03
3 212.00 00:09:15 4.81 0.29 1020.27

Table C.5. Turn On Events for Building 4

Occurences Time Average dE (kWh) Frequency Energy (W)
1 235.00 00:20:45 -7.10 0.32 -1668.61
2 214.00 00:17:00 -5.69 0.29 -1218.35
3 208.00 00:07:15 -6.65 0.28 -1384.03

Table C.6. Turn Off Events for Building 4

Occurences Time Average dE (kWh) Frequency Energy (W)
1 173.00 00:08:30 11.87 0.24 2053.41
2 154.00 00:09:00 11.33 0.21 1744.08
3 154.00 00:09:30 10.54 0.21 1622.61
4 151.00 00:08:45 11.60 0.21 1750.86
5 149.00 00:08:15 12.42 0.20 1851.27

Table C.7. Turn On Events for Building 5

Occurences Time Average dE (kWh) Frequency Energy (W)
1 173.00 00:15:30 -12.57 0.24 -2175.03
2 165.00 00:18:45 -8.08 0.23 -1333.41
3 153.00 00:15:15 -13.77 0.21 -2107.41

Table C.8. Turn Off Events for Building 5

Occurences Time Average dE (kWh) Frequency Energy (W)
1 179.00 00:05:45 10.89 0.43 1949.22

Table C.9. Turn On Events for Building 6
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Occurences Time Average dE (kWh) Frequency Energy (W)
1 271.00 00:16:45 -27.46 0.65 -7442.68
2 243.00 00:17:00 -13.76 0.58 -3344.04
3 173.00 00:20:00 -7.09 0.41 -1226.38

Table C.10. Turn Off Events for Building 6
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