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Abstract

Current approaches to building efficiency diagnoses include conventional energy audit tech-

niques that can be expensive and time consuming. In contrast, virtual energy audits of read-

ily available 15-minute-interval building electricity consumption are being explored to

provide quick, inexpensive, and useful insights into building operation characteristics. A

cross sectional analysis of six buildings in two different climate zones provides methods for

data cleaning, population-based building comparisons, and relationships (correlations) of

weather and electricity consumption. Data cleaning methods have been developed to cate-

gorize and appropriately filter or correct anomalous data including outliers, missing data,

and erroneous values (resulting in < 0.5% anomalies). The utility of a cross-sectional analy-

sis of a sample set of building’s electricity consumption is found through comparisons of

baseload, daily consumption variance, and energy use intensity. Correlations of weather

and electricity consumption 15-minute interval datasets show important relationships for the

heating and cooling seasons using computed correlations of a Time-Specific-Averaged-

Ordered Variable (exterior temperature) and corresponding averaged variables (electricity

consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day

as a third variable while also minimizing randomness in both correlated variables through

averaging. This study found that many of the pair-wise linear correlation analyses lacked

strong relationships, prompting the development of the new TSAOV method to uncover the

causal relationship between electricity and weather. We conclude that a combination of var-

ied HVAC system operations, building thermal mass, plug load use, and building set point

temperatures are likely responsible for the poor correlations in the prior studies, while the

correlation of time-specific-averaged-ordered temperature and corresponding averaged

variables method developed herein adequately accounts for these issues and enables dis-

covery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation
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for a new approach to building studies, that mitigates plug load interferences and identifies

more accurate insights into weather-energy relationship for all building types. Over all six

buildings analyzed the TSAOV method reported very significant average correlations per

building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15-

minute-interval electricity data further enables virtual energy audits of buildings to quickly

and inexpensively inform energy savings measures.

Introduction

In 2015, the U.S. commercial building sector accounted for approximately 8.7 quadrillion

BTUs of energy consumption, 58% of which was electricity. This electricity accounts for

approximately 37% of the total U.S. electricity consumption with 40% estimated to have been

wasted, leaving a large opportunity for energy and cost savings in the building sector [1]. Stud-

ies have found that technologies available today may reduce energy use in commercial build-

ings by 30% and even as high as 55% considering further advancement of energy efficient

technologies [2, 3]. However, implementing energy efficiency actions remains a challenge.

Energy audits, the identification and subsequent mitigation of energy efficiency losses, are

essential in reducing commercial building energy consumption due to buildings’ long lifetimes

and slow renewal rates [4]. However, commonly implemented energy audit methods and

building information modeling can be costly, time consuming, and often provide uncertain

results. Conventional energy audits require a team of individuals to perform walk-throughs of

the building installing equipment,(e.g. occupancy sensors, equipment sub-meters, etc.),con-

ducting various tests, and collecting answers to detailed questionnaires. Building Information

Modeling (BIM) typically includes physics-based models (such as EnergyPlus, BLAST, DOE-

2.1E, TRNSYS-TUD, and ESP-r) that require building managers to provide extensive detailed

inputs regarding equipment data, floor plans, building materials, occupant schedules, etc. [5–

9]. Both conventional energy audits and BIM have not achieved widespread adoption; each

costs a significant amount of time and money, which can outweigh the identified energy sav-

ings. For these reasons, building managers frequently question the economic benefit of audits

and can actively discourage their use [10–13].

Data science and analytics provides a promising alternative approach to conventional

energy audits. [14–16] Due to advances in processing, data storage, communication, and ana-

lytics (such as distributed computing), it is becoming possible to use rigorous, data-driven

approaches to uncover insights into building energy efficiency [17, 18]. Data analytics applied

to buildings have been used to measure the energy savings associated with building retrofits

[19, 20] and efficiency programs [21–24]. Data analytics provides two means of analysis: longi-

tudinal studies of an individual building or cross-sectional studies of a sample set, or popula-

tion, of buildings. Individual building analyses perform analytics on one building’s energy

data, creating models and identifying potential energy-saving measures. Most of the current

literature focuses on individual buildings, whether through conventional, BIM, or data analytic

energy audit techniques [11, 20, 24, 25]. Population-based analyses, however, compare results

from longitudinal building electricity usage studies between sample sets of several buildings in

different climate zones to gain cross-sectional and comparative insights into energy efficiency

by comparing and contrasting classes of buildings and climate zones due to differences and

similarities across the buildings in the sample set being studied. The combination of both indi-

vidual and population informed analyses can then lead to the understanding of variables

Cross-sectional study of temporal evolution of building electricity consumption
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previously overlooked [26]. One particular building energy population-based study looked at

over 4000 residential buildings in Ireland, using 30-min interval time series datasets to deter-

mine methods for ranking energy efficiency relative to other buildings and consequently, pri-

oritizing buildings for efficiency improvements [27]. Similar studies have yet to be conducted

on commercial buildings. Considering the additional complexity of commercial versus resi-

dential buildings, a population-based analysis may yield further insights into building opera-

tion and opportunities for efficiency savings.

To date, most data analytics approaches to energy efficiency have used standard linear

regression analysis. One of the first models, PRISM (PRInceton Scorekeeping Method),

released in 1986, used regression analysis to measure energy savings in commercial buildings.

[28] Utilities, companies, and government agencies used the statistical procedures of PRISM

to analyze monthly utility bills to provide a weather-adjusted analysis of energy consumption

before and after building retrofits. The U.S. Department of Energy’s EnergyStar Portfolio

Manager built on the PRISM approach by including other datasets such as occupancy, plug

load, and other variables and by developing a rating system for buildings associated with their

energy efficiency [29]. ASHRAE also developed the Inverse Model Toolkit (IMT) for a similar

purpose, [30] which was later extended to increase insight and accuracy [31, 30], and [32].

These data analytics approaches used low resolution energy data, such as yearly, monthly, or

daily time intervals for linear regression models. However, standard regression models fail at

finer temporal resolutions, such as hourly and sub-hourly datasets [33], and require much

more complex methods for modeling [34]. Even daily resolution datasets require autocorrela-

tion adjustments between energy and weather data to account for errors [16]. Studies have

continued to analyze building data at hourly levels using regression analysis with only fair

agreement to observed energy data, most likely due to the complex thermal relationship

between weather and buildings [24, 35, 36]. In contrast, this work examines 15-minute interval

electricity consumption paired with 30-minute and hourly weather datastreams to examine

the relationships and correlations between weather and energy consumptions across six build-

ings. The analysis uncovers patterns, anomalies, and unique characteristics associated with

specific buildings. This approach assumes that building information is inherently captured by

historical and other readily available energy data. Consequently, building characteristics other-

wise unidentifiable through standard means can be revealed.

In this paper we take an automated data analytics pipelining approach developed in R and

will first describe our data science methods including data sources, acquisition, cleaning,

assembly and analysis. We then present and discuss data-driven results of the cleaned datasets

as well as the results of exploratory data analysis on a set of six building in two Koppen-Geiger

(KG) climate zones [37, 38]. Further analysis is implemented on the relationship between elec-

tricity consumption and weather characteristics through a variety of methods, with the time-

specific-averaged-ordered variable (exterior temperature) and corresponding averaged vari-

ables (electricity consumption) method shown to provide the most significant linear correla-

tions. It is worth emphasizing this paper takes a data-driven modeling approach, as opposed to

a physics-driven modeling approach, using first-order statistical methods to capture behavioral

trends.

Methods

Considering the vast amount of building energy time series datasets which are available to be

analyzed, an open-data-science approach is taken using the software R. The R language is an

open-source programming language developed for statistical computing, with a substantial

community and more than 10,000 code packages available in the Comprehensive R Archive

Cross-sectional study of temporal evolution of building electricity consumption
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Network (CRAN) [39]. Packages beyond basic R installation implemented in this paper

include: RCurl [40], AnomalyDetection [41], and psych [42]. The integrated development envi-

ronment (IDE) RStudio was used extensively in the development of the code and visualization

of the data [43]. The building energy and weather time series. datasets were acquired from

National Oceanic and Atmospheric Administration (NOAA)noaa.gov, Solargis solargis.com,

and C3 IoT c3iot.com. The sequential steps and methods used in our data analysis pipeline are

presented and described by Fig 1.

Data acquisition and sources

We analyze six commercial buildings in two different locations and KG climate zones: San

Jose, California (Cfa) and Richardson, Texas (Csb). Table 1 describes each building by its loca-

tion, size, type, climate classification [44], and heating, ventilation and air conditioning

(HVAC) characteristics. These values were directly provided by the building manager and

then stored as a JavaScript Object Notation (JSON) file accessible to the developed code. The

building electricity consumption data were collected from revenue-grade utility electricity

meters (kWh) taken at 15-minute intervals, measured as a function of time for approximately

2 years, and stored for the building owner by C3 IoT. The data were manually downloaded

from their databases and saved as comma separated values(CSV) text files. Hourly weather

data were collected from publicly available National Oceanic and Atmospheric Administration

(NOAA) datasets (within 25 miles from building location) and privately held 30-minute inter-

val Solargis (GIS) datasets (precise within 3.5 kilometers for each building location) were also

employed [45]. The NOAA weather data were acquired for the NOAA location closest (and

within 25 miles) to the building manager’s provided longitude/latitude from a public NOAA

FTP endpoint. The data are fetched using the RCurl R package and then written to a CSV text

file containing values of temperature, wind speed, and relative humidity. Meanwhile, the satel-

lite-based geographic information system (GIS) weather data were ordered for the provided

latitude/longitude and acquired as a CSV text file. The ground level GIS weather data were

determined using an empirical atmospheric model produced by SolarGIS that utilizes satellite

images and projects this information through the atmosphere to calculate ground-level tem-

perature, wind speed, solar irradiance, and relative humidity. A comparison of the two datasets

is performed in the results to determine discrepancies between the data and assess the quality

of each.

The building electricity consumption data CSV contains two columns, local timestamp in

local time and electricity consumption in MWh. Table 2 shows a sample of the raw data. The

15-minute interval energy consumption data were computed via time integration by the build-

ing owner. Over a 15-minute interval the power data, or load, of a building changes frequently;

however, only the integration of the power load is reported for each interval. Even though this

work was done with 15 minute interval data, we refer to timepoints for the time-series analysis

instead of referring to datapoints by index number, since its important that the code is general-

ized for any time-series interval value.

Dataset cleaning

Initial data validation was performed on all building electricity datasets to ensure the data qual-

ity was sufficient for further analyses. All datasets underwent visualization and preliminary sta-

tistical analysis to identify potential artifacts, outliers, and anomalies. In particular, the utility

electricity data observed are partially incomplete, noisy, and anomalous, recording non-physi-

cal quantities or zeros at times. Using an anomaly detection package in R [41] developed by

Twitter, anomalies were identified and then removed or corrected as necessary. Anomalies are

Cross-sectional study of temporal evolution of building electricity consumption
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defined in this context as instances in the data which are either erroneous or unusual, but not

necessarily incorrect (i.e. higher usage for a sustained period of time). This analysis determines

when three distinct types of anomalies are present: extreme outliers, energy shifts, and missing

data. Here extreme outliers are defined as values an order of magnitude above the mean elec-

tricity usage of the entire dataset:

Outlier �
10

n
�
Xn

i¼1

Ei ð1Þ

where Ei is the electricity consumption in kWh at any timepoint and n is the number of time-

points in the dataset. Once identified these values were simply removed and tagged. The sec-

ond anomalies are energy shifts, which occur when the electricity consumption data has

moved from one consistently observed average energy value to a new and distinctly different

averaged energy value. These occurrences were detected using two four-day moving averages

computed along the electricity data (eight total days analyzed at once) represented asMA1 and

Fig 1. Data analysis flow chart. Data analysis flow chart of described methods and analyses.

https://doi.org/10.1371/journal.pone.0187129.g001

Table 1. Building characteristics of all six buildings. Includes location, size, purpose, climate, and electric HVAC.

Building Location Size (ft2) Purpose Climate Electric HVAC

Building 1 RN, TX 226000 Office/Lab Cfa Heat

Building 2 RN, TX 168000 Office/Lab Cfa Heat/Cool

Building 3 RN, TX 244000 Office/Lab Cfa Heat/Cool

Building 4 SJ, CA 109000 Office Csb Cool

Building 5 SJ, CA 115000 Office Csb Cool

Building 6 SJ, CA 168000 Office Csb Cool

https://doi.org/10.1371/journal.pone.0187129.t001
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MA2 given by:

MA1 ¼
Xiþ96hrs

i

Ei ð2Þ

MA2 ¼
Xiþ192hrs

iþ96hrs

Ei ð3Þ

When

n � 0:2�MA1 < MA2 < nþ 0:2�MA1 ð4Þ

where n is any integer value, an energy shift is identified at i + 96hrs until

MA2 < fracMA1n � 0:2 ð5Þ

when the energy shift is seen to return to original values. The purpose of this method is pri-

marily to identify instances of integer multiple counting of the data such as double counting.

The confidence interval of ±0.2 from any integer value was used to account for other fluctua-

tions in the data not due to the energy shift. Therefore any shift in the data within an integer

multiple ±0.2 is considered an energy shift and consequently is determined to have been multi-

ply counted by a meter (e.g. the range 1.8−2.2 ×MA1 returns an integer multiple of 2 or a

range of 2.8−3.2 ×MA1 returns 3). Using this information the electricity data can be ade-

quately corrected before analysis. For the case of double counting, the identified data points

were simply divided by 2. However, if the data contained energy shifts of a non-integer multi-

ple no correction was taken. The third anomalies addressed were missing data points in elec-

tricity consumption. Here, imputation of missing data points by linear interpolation for

intervals less than one hour was used; in this research imputed electricity data were< 0.1% of

the total dataset. In the event that a meter lost connection for this short interval, the rest of the

day’s electricity usage is still worthy of analysis. This step allowed additional days to be ana-

lyzed, despite minor data losses. Those days which exhibit data losses at an hour or larger were

not imputed to minimize inaccurate conclusions. All cleaned data for the six building datasets

reported anomalies of less than 0.5%.

Dataset assembly

The electricity, NOAA, and GIS data files were acquired in various formats, requiring scripted

processing to produce a uniform structured dataframe for analysis. Timestamps for all datasets

(NOAA, GIS, and electricity) were formatted to POSIX, (which uses the number of seconds

from the beginning of 1970 in the universal coordinated time zone (UTC)), and set to the local

time of each building. However, the timestamps from each dataset did not perfectly align. The

Table 2. Example of raw building electricity data at six consecutive intervals.

Key.Performance.Indicators. Utility.Electricity.Consumption..MWh.

2012-07-01T00:00:00-04:00 0.03785

2012-07-01T00:15:00-04:00 0.03677

2012-07-01T00:30:00-04:00 0.03727

2012-07-01T00:45:00-04:00 0.03551

2012-07-01T01:00:00-04:00 0.03605

2012-07-01T01:15:00-04:00 0.03695

https://doi.org/10.1371/journal.pone.0187129.t002
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NOAA datasets provided only hourly weather data, while GIS has 30-minute interval datasets,

and building electricity is in 15-minute intervals datasets. To account for the differences in

timestamps the weather data (NOAA and GIS) were imputed by linear interpolation at the

15-minute intervals corresponding to the building electricity data. This linear interpolation

was used since weather characteristics (e.g. temperature) do not vary drastically between

hourly or sub-hourly intervals. The datastreams from all three data sources were assembled

into an R dataframe for each building, with predictors (independent variables) and responses

(dependent variables) as columns, and the observations stored as rows, index by their 15-min-

ute timestamp. Additionally, due to the use of local time, daylight savings days were omitted

from the analysis as non-24 hour days posed problems in analysis.

Exploratory data analyses methods

Once the data were cleaned and processed, further exploratory data analyses (EDA) could be

implemented. EDA provides a means to determine the basic characteristics of, and relation-

ships between, the variables in the building datasets using both quantitative methods and data

visualization. In this section quantitative measures such as comparisons of electricity usage

and the correlations of electricity consumption and weather, and visual EDA are shown for the

datasets and pair-wise univariate relationships.

Building comparisons. The energy data alone were assessed for baseload, daily variation,

percentage of daily variation to baseload, and the energy use intensity (EUI). The baseload, B,

was computed as the 5th percentile of minimum energy values of each day, rather than the

absolute minimum value of energy, and is given by

B ¼ Emin;i: ð6Þ

Emin is the subset of values containing the minimum values of each day

Emin � ðminEnj¼1
Þ
N
k¼1

ð7Þ

and then sorted in ascending order, where j = 1: n represents the data points of an entire day

while k = 1: N denotes the amount of days in the dataset. The index, i, in Eq 6 is the index of

the 5th percentile given by

i ¼
5N
100

� �

ð8Þ

where N is the number of days in the analysis. This method was chosen to minimize the effect

of any erroneous data which may have passed through cleaning and result in incorrect base-

load values when taking the absolute minimum. The daily variation, DV was determined by

averaging day energy ranges given by

DV ¼
1

N

XN

i¼1

Erange ð9Þ

where

Erange � ðmaxEnj¼1
� minEnj¼1

Þ
N
k¼1
: ð10Þ

Finally, the energy use intensity, EUIwas calculated as

EUI ¼
1

T � A

Xm

i¼1

Ei ð11Þ
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where T is in years, A is the building squarefootage, m is the number of data points, and E is

the energy in kBtu. This equation results in EUI of units kBtu/ft2 × yr as is standard of U.S.

Department of Energy EUI databases [46]. However, note that this analysis only included util-

ity electricity data and not other sources of energy such as natural gas, and therefore cannot be

interpreted as a conventional EUI assessment.

Correlations between weather and energy. For most buildings, the largest fraction of

energy usage comes from HVAC [47], which is correlated with the outdoor weather character-

istics. Therefore using NOAA and GIS weather datastreams to understand the relationship

between building energy use and weather is critical, since correlations and scatter plots of elec-

tricity versus weather data reveal these relationships. Pair-wise correlation scatter plots were

created, using the function panel.pairs() from the R package psych [42], which show the Pear-

son linear correlation between all variable pairs in the dataset. Linear correlations are used to

identify the first-order correlation between variables and whether that relationship is negative

or positive. With the insight gained from these linear correlations, further and more complex

models can be developed to investigate the potential existence of higher order correlations

among these parameters. In this analysis, the variables analyzed were: electricity consumption

(kWh), exterior temperature (NOAA (°F) and GIS (°C)), and irradiance (global horizontal irra-

diance (GHI -W/m2)). Relative humidity correlations were * 0 for all buildings and were

excluded from the analysis. Irradiance was included in this analysis as it effects the thermal

load of a building [7, 48].

To improve the correlation analysis, heating and cooling periods were analyzed separately

using heating/cooling degree day (HDD/CDD) temperature of 65°F (18.3°C) as the delineator

[49]. To ensure days were strictly heating or cooling operations, an offset of the base tempera-

ture was defined for each individual climate, as each location undergoes varying temperature

fluctuations (i.e. San Jose experiences mild weather with minimal daily fluctuations, while

Richardson experiences more extreme weather with larger daily fluctuations). The offset was

defined as half of the standard deviation of the day mean temperatures, Tmean, with heating

operations as

Tmean < 65oF � s=2 ð12Þ

and cooling operations

Tmean < 65oF � s=2 ð13Þ

where

Tmean � ð
Xn

j¼1

EiÞ
N
k¼1 ð14Þ

and σ is the standard deviation of mean day temperatures, Tmean. The mean temperature

(NOAA) and standard deviation for Richardson were 67.3°F and 16.9°F and for San Jose

59.7°F and 7.1°F. This analysis also provides an opportunity to determine the general type of

heating and cooling systems (e.g. electric, gas, district energy). For example, during the heating

season, a strong negative correlation between electricity consumption and exterior tempera-

ture indicates the presence of an electric heating system (i.e. when temperature decreases, con-

sumption increases).

Finally, two more approaches were taken to determine the correlation coefficients. As pre-

viously mentioned, a significant amount of a building’s electricity consumption (e.g. such as

occupancy and plug load) is not a result of weather changes. One approach to minimize these

loads is to assume behavior-induced electricity consumption occurs similarly at a given time

Cross-sectional study of temporal evolution of building electricity consumption
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each day, and then hold each time of the day constant in analysis. That is, only compare one

time of the day against the same time for all days in the dataset(e.g. all 9 a.m. values compared

with only 9 a.m. values). This was done by subsetting the datasets for each time of the day and

taking the correlation between the electricity and temperature values. The subsets are defined

for electricity and temperature as

Etimej � ðEjÞ
N
k¼1

Ttimej � ðTjÞ
N
k¼1

ð15Þ

where k: N represent all days in the analysis and j refers to the time point of the day. Both the

electricity and temperature subsets are created for each time of the day and are correlated as

such

Cnj¼1
¼ ðcorðEtimej;TtimejÞÞ

n
j¼1
: ð16Þ

Therefore reporting a vector of the linear correlations of the n time points within a day of

data. In this analysis, one day consists of 96 timepoints and consequently 96 correlations (i.e.

24 hours at 15-minute intervals gives 96 data points per day). This analysis is referred to as the

time-specific correlation method.

Furthermore, the time-specific correlation method can be modified to additionally mini-

mize the occupancy and plug load interference. The previous analysis assumes occupancy and

plug load contributions are relatively constant for all days; however, the uncertainties of

human occupant behavior are a major challenge in predicting building energy, making this

previous assumption extremely weak [50]. To minimize this uncertainty/randomness, each

time-specific dataset (both electricity and temperature) was reordered by temperature from

highest to lowest resulting in E0timej and T 0timej. Using this new order, groups of 30+ observations

(30 days at each specific time) of most similar temperatures were determined and averaged

within each time point

Epavg:timej;l ¼
1

30

X30

i¼1

Etimej;i;
X60

i¼31

Etimej;i; :::
30

N � ð30ðp � 1Þ þ 1Þ

XN

i¼30ðp� 1Þþ1

Etimej;i

" #

Tpavg:timej;l ¼
1

30

X30

i¼1

Ttimej;i;
X60

i¼31

Ttimej;i; :::
30

N � ð30ðp � 1Þ þ 1Þ

XN

i¼30ðp� 1Þþ1

Ttimej;i

" #

:

ð17Þ

Then correlating each time-specific set of vectors resulted in a new correlation vector C:

Cpl¼1 ¼ ðcorðEavg:timej;Tavg:timejÞÞ
p
l¼1
: ð18Þ

This method is called the correlations of a time-specific-averaged-ordered variable and the

corresponding averaged variable (TSAOV), where temperature and electricity are the variables

respectively. By grouping at least 30 observations within each time-specific subset with similar

temperature values, the average, or typical, occupancy and plug load value was able to be held

constant through a range of temperatures while also maintaining, or even refining, the

response of building electricity to temperature.
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Results and discussion

Data cleansing

Three types of anomalies were found throughout the datasets: outliers, missing data, and

energy shifts and each of these anomalies can impede robust analysis and graphical representa-

tion. Outliers are relatively simple to identify and omit, but missing data and mean shifts pres-

ent larger analysis issues. Missing data skew the analysis and requires the omission of those

time stamps when gaps are larger than an hour—resulting in the omission of months of data

that could have been useful in the analysis. Energy shifts are the result of meter error which

does not require the elimination of data, but does require adjustment before analysis.

Fig 2 displays the raw electricity consumption for the six buildings over two years, 2012-

2014, with the exception of Building 6, which only 1.25 years was available. All buildings show

various anomalies and, in particular, Building 5 shows extreme outliers and energy shifts that

render the visual useless. Those anomalies include a large spike (outlier) toward the end of the

dataset, as well as two raised sections of electricity consumption (energy shifts). Fig 3 shows

Building 5 with 5.48% anomalies before cleaning and with 0.04% anomalies following the han-

dling of missing data, outliers, and energy shift correction. Additionally, Fig 4 displays a closer

view of Building 5’s energy shift before and after data cleaning. Note that the difference

between the raw and cleaned energy consumption data for Building 5 is 814 MWh, which is

equivalent to $155,000 at $0.19/kWh. In other words, meter error alone may have led to

unnecessary utility charges, in this case an over-billing of $155,000.

All datasets were cleaned using the methods described early and Fig 5 shows all six build-

ings after passing through data cleaning and assembly. These results show the importance of

data cleaning in providing correct data and mitigating anomalies.

Exploratory data analytics

Building comparisons. The cleaned energy datasets were then analyzed to assess base-

load, daily variation, percentage of daily variation compared to baseload, and energy use inten-

sity. The analysis is represented in Table 3, and can also be compared to Figs 5 and 6.

Comparing the baseload between the 6 buildings in Table 3, those with lab spaces reported

very high baseloads, such as buildings 1, 2, 3, and 5, while office-only spaces exhibited much

smaller baseloads by 4-13 times. Even partial lab buildings (Building 1 and 3) presented base-

load values almost 3 times the size (300kWh) of the smallest lab (Building 5 at 100kWh). In

comparing EUI values of all four building, labs fell between 180-202 kBTU/(ft2 × yr) which are

consistent with the Department of Energy’s Portfolio Manager for lab space [46]. However,

considering these values omit non-electric HVAC, building EUI is likely much higher, indicat-

ing room for efficiency savings. The office buildings, located in San Jose, CA, showed a much

smaller EUI (avg. EUI of 90.8) than those in Richardson, TX (195.1). Climate differences

among these locations is the most likely factor for this large difference in EUI. Finally, the

daily variance and percentage of daily variance to baseload varied wildly among the six build-

ings from 12.6%-213% presented in Table 3 and shown graphically in Fig 5, as well as in Fig 6.

This metric, percentage of the daily variance, is important as it allows one to define the relative

impact these analyses could have on identifying efficiency problems associated with a build-

ing’s operation.

Buildings with large baseloads (> 100kWh) and otherwise small daily variations (< 75% of

the baseload) may not allow for significant enough variability which is necessary in order to

uncover specific issues. Nonetheless, those buildings with high baseloads may indicate the

presence of systems or equipment that should be operating variably and not as part of the

Cross-sectional study of temporal evolution of building electricity consumption
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baseload (e.g. requiring setpoint changes at night or during periods of low occupancy). For

example, Building 1 from Table 3 exhibits a 15-minute baseload consumption of 325kWh with

41kWh of daily variation, so only 11% of the consumption may be probed for further analysis.

Conversely, Building 6 exhibits a daily variability of 68%, which through further analysis may

reveal markers associated with HVAC scheduling, large equipment usage, lighting consump-

tion, and envelope insulative value among others not currently considered. Therefore, the

comparison of these six buildings demonstrates the utility and potential for a population-

based analysis for virtual energy insights when applied to much larger building databases.

Fig 2. Raw electricity consumption. Raw electricity consumption data from full datasets for all 6 buildings(building number shown

on the right most side of each plot). Building 5 shows the presence of outliers and mean-shifts; all buildings exhibit missing data.

https://doi.org/10.1371/journal.pone.0187129.g002
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0.0.1 Weather data. Both NOAA and GIS-derived weather datasets were used in this

analysis to determine discrepancies between the weather data and assess quality of each. The

differences between GIS and NOAA data include sampling rate, location accuracy, and mea-

surement techniques. The GIS datasets provide 30-minute intervals, are accurate within

3.5km, and the data are computed using an atmospheric model, while the NOAA datasets

include hour intervals, are accurate to at least 25 miles (although often less), and are recorded

via direct sensors. GIS datasets prove optimal in both sampling rate and location accuracy,

however, NOAA data has a higher accuracy when considering their use of ground-based

Fig 3. Electricity consumption anomaly cleaning. Building 5(top) raw electricity consumption data (5.48% anomalies) and

(bottom) cleaned electricity consumption data (0.04% anomalies).

https://doi.org/10.1371/journal.pone.0187129.g003

Fig 4. Mean shifts. Nine week view of Building 5 mean shifts. Original data displayed as shaded blue circles and corrected data as

red hollow circles.

https://doi.org/10.1371/journal.pone.0187129.g004
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Fig 5. Cleaned electricity data. Cleaned electricity consumption of full datasets for all 6 buildings.

https://doi.org/10.1371/journal.pone.0187129.g005

Table 3. Baseload, daily variance, percentage of daily variance to baseload, and energy use intensity (electricity consumption only).

Building Baseload Daily Variance Daily/Base EUI

kWh kWh % kBtu
ft2�yr

Building 1 324.90 40.86 12.58 201.95

Building 2 182.25 110.10 60.41 188.11

Building 3 316.35 73.12 23.11 195.36

Building 4 23.99 32.86 136.98 58.57

Building 5 108.24 76.11 70.31 180.38

Building 6 24.98 53.19 212.96 33.34

https://doi.org/10.1371/journal.pone.0187129.t003
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sensors (measuring temperature, wind speed, and relative humidity). Comparisons between

temperature datasets result in a Pearson linear correlation coefficient R = 0.995 for Richard-

son, TX and R = 0.887 for San Jose, CA as shown in Fig 7.

Considering these strong correlation coefficients, the data are relatively indifferent. This

indicates the use of either dataset as valid for the analyses performed in this paper. However, it

is worth noting the lower coefficient in San Jose. This is most likely due to the large climate

variability associated with the region in the San Francisco Bay area, whereas Richarson’s larger

correlation can be attributed to the Dallas area’s homogeneous climate. Therefore, although

both datasets are similar and valid for analysis, locations with larger climate variability should

Fig 6. Week view of electricity consumption. Electricity consumption of one week for all 6 buildings. Building number label is to the

right of each plot.

https://doi.org/10.1371/journal.pone.0187129.g006
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favor GIS datasets over NOAA. One additional note between the datasets is price and inclusion

of irradiance. NOAA is readily available, entirely free, and open sourced, while GIS is also

readily available, but must be purchased and includes irradiance.

Correlations of weather and energy. Weather is known to impact the electricity con-

sumption of buildings and consequently significant correlations were expected between

weather data such as temperature and solar irradiation to electricity consumption. Fig 8 shows

a pair-wise correlation plot corresponding to Building 1’s full dataset, with direct correlation

coefficients of energy to exterior temperature of -0.44 (GIS), and energy to irradiance of 0.16.

All three of these correlations are surprisingly low, representing a weak to moderate (less than

0.67 magnitude [51]) negative correlation. The negative correlation coefficient associated with

Building 1 indicates that the building electricity load increases with decreasing temperature,

leading to the probability that electric (or partial electric) heating systems are present in the

building, although electric cooling is not. Table 4 displays all of the correlations among all six

buildings using full datasets. The relatively weak correlation coefficients (< 0.67) found in this

analysis indicates that other factors in the building must be influencing the correlation.

To further analyze these univariate linear correlations, the data were split into heating and

cooling seasons. During the heating season, increasing electricity consumption should corre-

late with decreasing exterior temperatures to maintain indoor temperature (a negative correla-

tion), while during the cooling season an increase in energy consumption should correlate to

an increase in exterior temperature (a positive correlation), assuming electric systems are used

for heating and cooling respectively. As shown in Table 5, in Building 1, the temperature cor-

relations from the subsetted cooling-season data (exterior temperatures above 65°F) are essen-

tially uncorrelated (-0.06 and -0.03) as expected since this building does not use an electric

cooling system (Table 1). From the heating-season data (temperatures below 65°F) correlations

are -0.33 and -0.38, which point to the presence of some electric systems used for heating,

albeit the correlations are still rather weak.

The remaining five building correlations can be compared to the HVAC system character-

istics from Table 1. Both Building 2 and 3 possess heating and cooling electric HVAC systems

even though their correlations for cooling are positive nonzero values (i.e. they agree with

expected results), heating operation values are essentially zero when they should reflect nega-

tive nonzero values. Buildings 4 and 5 provide electric cooling only, yet they exhibit similarly

Fig 7. Comparison of NOAA and GIS temperature data (˚C). Left: Richardson, TX (r = 0.995), Right: San Jose, CA (r = 0.887).

https://doi.org/10.1371/journal.pone.0187129.g007
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strong positive correlations with temperature for heating. Finally, Building 6, an electric cool-

ing only building, presents a third misrepresentation, as the data does not indicate a significant

difference in correlations between cooling and heating operations. Considering five of six

building’s correlations differ from expected results, simply subsetting the data into heating and

cooling seasons does not alone lead to expected correlations between HVAC electricity con-

sumption and exterior temperature. These poor correlations may be the result of a natural

thermal lag of the building (due to thermal mass) and/or results from occupancy or other

operational variations in the building, which are both addressed in the final approaches.

Influence of thermal mass and occupancy. Two approaches were taken to examine the

influence of thermal mass and occupancy or other operational variations in the building. The

first approach, correlations of time-specific variables, examined the resulting correlations

when only specific times of the day are compared against one another. For example, each time

Fig 8. Correlations of electricity consumption and weather. Correlation plot of weather data and energy for Building 1.

https://doi.org/10.1371/journal.pone.0187129.g008

Table 4. Correlations for all 6 buildings using NOAA/GIS exterior temperature and energy consump-

tion full datasets.

Building NOAA Temp. GIS Temp. Irradiance

Building 1 -0.44 -0.44 0.16

Building 2 0.27 0.29 0.50

Building 3 0.40 0.42 0.38

Building 4 0.62 0.62 0.52

Building 5 0.53 0.52 0.51

Building 6 0.07 0.60 0.67

https://doi.org/10.1371/journal.pone.0187129.t004
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of the day results in its own correlation, 6 am data are only correlated with 6 am data, or 9 am

with 9 am, and this is done to mitigate the effects of operational tendencies (such as interior

lighting turning on at 6 am each day) in a building. Therefore, the result of this analysis is n
separate correlations, one for each time of the day. Fig 9 displays the correlations for each time

of the day on all 6 buildings. All six plots show low correlation coefficients between electricity

consumption and temperature. The largest correlation coefficient among all the pairs is -0.66,

which is significant; however, virtually all the remaining values have magnitudes below 0.5.

These poor correlations are still attributed to interference between occupancy and plug loads,

which are largely mitigated in the following TSAOV method of analysis.

Despite the low values, there still remain striking findings in these plots: in particular, the

variability of the correlations throughout the day. For all buildings, with the exception of

Building 5, large drops are seen in correlation values during the early morning around 6 a.m.

This is attributed to building startup times, which are scheduled events and not temperature

induced. Similar behavior can be seen in the later hours in many of the buildings where the

correlation either rises or drops suddenly. The difference in rising or dropping during evening

hours is unclear, but may indicate a relationship between a building’s occupied to unoccupied

set point change in the evening. Further investigation could lead to the determination of a

building’s thermal mass by observing the correlation recovery time after an evening shutdown.

Time-specific-averaged-ordered variable method for weather correlations. To account

for the poor overall correlation values, the correlations of a time-specific-averaged-ordered

variable and corresponding averaged variable method was implemented. The TSAOV method

takes two more steps from the previous analysis by grouping the data (already subsetted by

each individual time of day) by temperature in groups of 30+ observations (i.e. 30 days at a

specific time) of most similar temperature. Then the mean temperature and electricity were

computed for each group and correlations were calculated across groups of the same time of

day. To further demonstrate the data-driven linear correlation approach taken, two TSAOV-

computed datasets of the 96 times, 12am and 3pm, are shown accompanied with a linear best

fit in Figs 10 and 11 respectively. Note that in these figures, each data point is representative of

the average electricity consumption of 30+ observations at similar temperatures and plotted

against the average temperature of those similar temperatures. The 3pm data show strong lin-

ear trends among all buildings, indicating linear correlations are the optimal choice for analyz-

ing the temperature-electricity relationship. One could argue that Building 6 shows a weak

nonlinear trend, however the linear approximation still closely captures the behavior. Further,

the 12am times for all buildings, except for Building 5 (which still shows a generally positive

linear trend at this particular time), also exhibit strong linear trends. When considering these

12 comparisons, it is evident that a linear correlation analysis presents the most general and

Table 5. Correlations of energy consumption and weather variables for all 6 buildings using NOAA and GIS datasets. The left three columns corre-

spond to the subsetted cooling data while the right three columns correspond to the heating season.

Building Cooling Operation Heating Operation

NOAA

Temp.

GIS

Temp.

Irradiance NOAA

Temp.

GIS

Temp.

Irradiance

Building 1 -0.06 -0.03 0.36 -0.33 -0.38 0.24

Building 2 0.28 0.30 0.52 -0.04 -0.01 0.40

Building 3 0.34 0.35 0.41 0.06 0.07 0.22

Building 4 0.45 0.41 0.29 0.38 0.35 0.09

Building 5 0.34 0.25 0.28 0.36 0.33 0.32

Building 6 0.04 0.31 0.38 0.05 0.36 0.58

https://doi.org/10.1371/journal.pone.0187129.t005
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Fig 9. Correlations of time-specific variables. Correlation of time-specific variables, electricity consumption and temperature, for

all six buildings.

https://doi.org/10.1371/journal.pone.0187129.g009
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Fig 10. TSAOV method of temperature and electricity consumption for 12am. TSAOV-computed average electricity

consumption against averaged outside temerpature for all buildings at 12am.

https://doi.org/10.1371/journal.pone.0187129.g010
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Fig 11. TSAOV method of temperature and electricity consumption for 3pm. TSAOV-computed average electricity

consumption against averaged outside temerpature for all buildings at 3pm.

https://doi.org/10.1371/journal.pone.0187129.g011
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universally accurate method to compare multiple buildings. The use of linear correlations here

are also a result of many of the six buildings having either electric heating or cooling, but not

both, meaning electricity should respond either monotonically negative or positive. Nonethe-

less, nonlinear physical relationships have been observed by other researchers such as the

cubic relationship between energy consumption and exterior temperature identified in small

residential buildings. [52]. In contrast, the linear trends also may be a result of the relatively

large buildings considered here (i.e. > 100,000ft2) where large thermal masses may dampen

the effect of weather changes. Therefore, additional work in this area is required to address the

complex physics and statistical relationships among the relevant variables.

The overall results are shown in Fig 12. These values are greatly improved when compared

to the previous analysis. For many of the buildings, the values exceed a magnitude of 0.9 and

report plots with less variability throughout the day. Building 1 specifically shows strong corre-

lation values ranging from -0.88 to -0.98, while buildings 2, 3, 4, and 6 have values pushing the

upper limit of 1 throughout the data. These significant improvements in correlation values

confirm the strong relationship expected between weather and building electricity consump-

tion. Therefore, this analysis shows that minimizing the random plug load and occupancy,

which is not associated with temperature, through grouped averaging is crucial in uncovering

the true relationship between HVAC building electricity usage and exterior temperature.

Additional aspects of the later method include the steep dips in correlation. Seen in build-

ings 2, 3, 4, and 6, they again indicate large scheduled systems which do not necessarily depend

upon temperature and therefore interfere with the correlation despite the averaging technique.

Furthermore, these four buildings are located about 1,500 miles apart and share a similar char-

acteristic despite differing climates and locations. Another feature of this observation is the

curved return to high correlation values after the dip. These curves may indicate the rate at

which a building returns to a steady operation during occupied hours when related to

temperature.

To compare the correlations between both analyses in a more simplified manner, Table 6

displays the minimum, maximum, mean, and standard deviation among all n (96) correlations

for each method. Note the distinct difference between the mean values of each analysis. Magni-

tudes of the mean values range from 0.82 to 0.94 for the TSAOV method, while the simpler

time-specific method has correlation mean values ranging from magnitudes of 0.05-0.49. Con-

sidering these differences the TSAOV method presents an important strategy to adequately

minimize occupancy and plug load from electricity and temperature correlations. Given this

ability to deduce high correlations, the TSAOV method can now be further used to determine

the correct response of buildings to temperature.

Conclusions

An analysis of building energy usage of multiple buildings has provided insight on data clean-

ing issues, building similarities and differences, relationships between weather and electricity

data, and led to the development of the TSAOV method. For accurate analysis, data cleaning

must include the identification and mitigation of anomalies such as outliers, missing data, and

energy shifts. Determining these erroneous data points gives insights, such as faulty meter

recording, and provides a means to quickly and automatically inform an owner about a poten-

tial costly billing mistake. This paper has also shown the utility of analyzing multiple buildings

and performing a small population analysis. Buildings of different purposes and climates show

varying usage characteristics such as baseload, daily operation, and energy use intensity(EUI).

Larger population studies of building electricity consumption may lead to further insights,
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Fig 12. TSAOV method of temperature and electricity consumption. Correlations of time-specific-averaged-ordered

temperature and the corresponding averaged electricity consumption for all six buildings.

https://doi.org/10.1371/journal.pone.0187129.g012
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such as detecting unusually high baseload consumption compared to buildings of similar cli-

mate, type, and operation.

The weather data sources, NOAA and GIS, were assessed for differences, similarities, and

the quality of each. The NOAA and GIS data had strong correlations, although San Jose’s

(r = 0.887) comparison was weaker than Richardon’s (r = 0.995). One should use GIS data if

available, especially in locations where climate variability is large, such as the San Francisco

Bay Area. However, in correlation analyses and most notably in the electric/non-electric

HVAC analysis, both NOAA and GIS resulted in similar findings, indicating the use of either

in future analyses is satisfactory. The largest difference between the two datasets however is

price and the inclusion of irradiance: NOAA is entirely free and open sourced, while GIS is

readily available and includes irradiance, but must be purchased.

Weather to electricity consumption correlations were also studied at length with various

analysis strategies. Weather is known to impact the electricity consumption of buildings, there-

fore significant correlations were expected between consumption and electricity usage. To

explore these relationships, correlations were computed in a variety of ways, where only one of

the analyses showed strong linear correlation coefficients. Data was correlated between elec-

tricity consumption, temperature, and irradiance by the following: directly, accounting for

heating/cooling differences, the time-specific method, and the TSAOV method. When omit-

ting the time-specific analyses, the various strategies only resulted in correlation coefficients as

high as 0.67, followed by 0.62, 0.60, 0.58 and falling rapidly. Although these few correlations

could be considered strong, their methods did not hold considering all six buildings. In fact,

the highest correlations were mostly found in the first analysis, directly comparing weather

and consumption. This indicated that direct correlations may not have been a result of causa-

tion, as non-electric HVAC operations should not combine to lead to higher overall correla-

tions. Therefore, the low correlations found throughout this early data analysis suggest that the

correlations are critically hindered by other components of the building consumption, such as

the following: 1) non-electric HVAC systems were present and/or the heating/cooling was pro-

vided via another building or a district energy configuration; 2) the building had a large ther-

mal mass slowing responses to ambient outdoor temperature; 3) plug load use in the building

had no relationship to outside temperature; and 4) building set point temperatures changed in

occupied and unoccupied states. Consequently, analyses not accounting for these components

(yet still show high direct correlations) are likely coincidental and are not a result of causation

due to exterior temperature.

To mitigate these issues the TSAOV method was implemented. This analysis averaged 30

+ day groups of most similar temperature values and computed the correlations across the

groups. This strategy successfully minimizes the interfering occupancy and plug loads and

returned significantly higher correlation values among all six buildings. Based upon this strong

Table 6. Statistics of correlations between electricity and temperature from time-specific analyses. The left four columns provide values for the

TSAOV analysis, while the right four display the original time-specific analysis.

Building TSAOV Correlation Time-Specific Correlation

Min. Max. Mean S.D. Min. Max. Mean S.D.

Building 1 -0.98 -0.89 -0.94 0.02 -0.66 -0.40 -0.49 0.07

Building 2 -0.38 0.99 0.87 0.24 -0.13 0.60 0.32 0.18

Building 3 -0.76 0.99 0.87 0.32 -0.21 0.45 0.33 0.15

Building 4 0.48 0.99 0.92 0.09 -0.05 0.50 0.26 0.14

Building 5 0.61 0.97 0.82 0.09 0.16 0.57 0.29 0.12

Building 6 0.07 0.99 0.91 0.16 -0.26 0.31 0.05 0.15

https://doi.org/10.1371/journal.pone.0187129.t006
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temperature-electricity relationship, models can now determine a robust linear coefficient

between electricity and temperature from which to predict energy usage with first-order accu-

racy. Additionally, uncovering this relationship can lead models to disaggregate the tempera-

ture component of building energy and subsequently uncover the tendencies of occupancy

and plug load, which have previously hindered data analyses.

Together these analyses provide useful information that can lead to the diagnosis of build-

ing characteristics and operational efficiencies. As long as a building owner has sufficient

access to the building’s electricity consumption data, the data can be ingested into a virtual

energy audit tool and insights uncovered within minutes, unlike traditional audits which can

take weeks to months. Such a virtual energy audit tool might present results in an easily digest-

ible manner such that the building owner, with limited expertise, can simply understand the

findings and recommendations, with additional detail provided to an energy audit team or

building energy manager. Additionally, once characteristics about the building and its opera-

tion are revealed, results can be compared to a large population of buildings with similar

attributes.

Although the data-driven analyses presented here provide many insights, limitations do

exist. In particular, this data-driven approach requires the availability of large datasets. In this

study datasets of two years at 15-minute intervals for electricity consumption, along with

weather datasets, were necessary to achieve statistically significant results. Two years is

required because the analyses demand multiple layers of subsetting, and with each subset the

data become smaller. Consequently, large amounts of data are necessary to accurately diagnose

building characteristics and operational inefficiencies. The 15-minute resolution is required

because such resolution captures distinct events within the building and is the most common

interval of newly installed smart meters. Of course, many events may occur between each

15-minute interval, such as a piece of equipment turning on while another turns off, and the

behavior of each may be lost within the interval. Higher resolution data (e.g. minute or submi-

nute intervals) would provide opportunities for additional insights.

This study was an initial exploration into using a virtual energy audit tool to diagnose build-

ing characteristics and operational inefficiencies. Future work includes the additional develop-

ment of methods, such as TSAOV, to fully uncover the physics-based and non-linear

relationships and its impact on results. The TSAOV method can also be further implemented

to fully assess the thermal lag or effect of thermal mass in buildings. Future studies also may

examine how to diagnose buildings systems and the presence of large equipment determining

the size of such systems/equipment and their relative role and importance in the building. Fur-

ther research is also needed to explore the relative impact of irradiance on building energy

consumption, particularly its impact against and with temperature. Finally, an analysis com-

bining insights on energy dependence on temperature, irradiance, lighting systems, non-

HVAC equipment, and occupancy induced loads can lead to the successful disaggregation of

total building energy consumption. Disaggregating the various loads of a building from ana-

lyzing the total load without the need for additional sensoring or sub-metering, can be an

incredibly powerful tool. Additionally, one might convert these virtual insights into actionable

energy savings opportunities, identifying the potential return-on-investment of various audit

possibilities.
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