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Response modes computed via linear resolvent analysis of a turbulent mean-flow field
have been shown to qualitatively capture characteristics of the observed turbulent coherent
structures in both wall-bounded and free shear flows. To make such resolvent models
predictive, the nonlinear forcing term must be closed. Strategies to do so include
imposing self-consistent sets of triadic interactions, proposing various source models
or through turbulence modelling. For the latter, several investigators have proposed
using the mean-field eddy viscosity acting linearly on the fluctuation field. In this
study, a data-driven approach is taken to quantitatively improve linear resolvent models
by deducing an optimal eddy-viscosity field that maximizes the projection of the
dominant resolvent mode to the energy-optimal coherent structure educed using spectral
proper orthogonal decomposition (SPOD) of data from high-fidelity simulations. We
use large-eddy simulation databases for round isothermal jets at subsonic, transonic and
supersonic conditions and show that the optimal eddy viscosity substantially improves
the agreement between resolvent and SPOD modes, reaching over 90 % agreement
at those frequencies where the jet exhibits a low-rank response. We then consider a
fixed model for the eddy viscosity and show that with the calibration of a single
constant, the results are generally close to the optimal one. In particular, the use of a
standard Reynolds-averaged Navier–Stokes eddy-viscosity resolvent model, with a single
coefficient, provides substantial agreement between SPOD and resolvent modes for three
turbulent jets and across the most energetic wavenumbers and frequencies.
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1. Introduction

Resolvent analysis (also known as input/output analysis) determines a volumetric
distribution of forcing in the frequency domain that gives rise, when acting in a
time-invariant flow, to the most amplified linear response, typically measured in terms
of its total kinetic energy. It is an important tool in stability and transition analysis
(Farrell & Ioannou 1993; Trefethen et al. 1993; Schmid, Henningson & Jankowski 2002;
Jovanović & Bamieh 2005), and has more recently been proposed as a reduced-order
model of coherent structures in fully developed turbulence (Hwang & Cossu 2010b;
McKeon & Sharma 2010). In the latter context, resolvent analysis can be derived by
partitioning the Navier–Stokes equations into terms that are linear and nonlinear with
respect to perturbations. Such a rearrangement of the equations is exact, and the equations
may be explored without recourse to any further modelling. With varying degrees of
formality, similar approaches were proposed in the past (Malkus 1956; Michalke 1971;
Crighton & Gaster 1976; Butler & Farrell 1992), but increases in computer power that
speed up the singular value decomposition of the linear operator using direct lower-upper
(LU) decomposition (multi-frontal algorithms for sparse systems) have allowed a detailed
characterization of the resolvent spectrum in several turbulent, canonical wall-bounded
(Hwang & Cossu 2010a,b; McKeon & Sharma 2010; Moarref et al. 2013; Sharma &
McKeon 2013) and free shear flows (Jeun, Nichols & Jovanović 2016; Schmidt et al. 2018).

At those frequencies where the dominant singular value is significantly larger than the
subdominant ones (which we refer to as low-rank behaviour), the dominant modes are
qualitatively similar to coherent modes extracted from data (Schmidt et al. 2018). However,
when the response is not low rank, a non-trivial structure of the nonlinear forcing terms
may lead to discrepancies between resolvent and observed modes. Thus, it is necessary to
model the nonlinear forcing to attain resolvent analyses that are quantitatively predictive.
Previous studies have considered several approaches for modelling the nonlinear forcing
in linear analyses. These include empirical models (Bechara et al. 1994; Tam & Auriault
1999; Cavalieri et al. 2011; Cavalieri & Agarwal 2014; Towne, Bres & Lele 2017),
estimation given partial statistics of the response (Zare, Jovanović & Georgiou 2017;
Martini et al. 2020; Towne, Lozano-Durán & Yang 2020) and/or the use of a turbulent,
or eddy, viscosity. An eddy viscosity may be motivated by concepts underlying the triple
decomposition (Reynolds & Tiederman 1967; Reynolds & Hussain 1972), which identifies
the Reynolds stresses as acting on the coherent fluctuations (from both the coherent and
incoherent fluctuations), even though the phase average used to define the coherent part
of the turbulent viscosity field is ambiguous in unforced turbulent flows. Many studies
have applied eddy-viscosity models in the wall-bounded turbulence literature (Del Alamo
& Jimenez 2006; Cossu, Pujals & Depardon 2009; Pujals et al. 2009; Hwang & Cossu
2010a,b; Hwang 2016; Vadarevu et al. 2019; Hwang & Eckhardt 2020) either through
implementation of the Cess (1958) model or by estimating the eddy-viscosity field via the
Reynolds stresses and the mean shear rate of strain. Similarly, global stability analyses
have applied eddy-viscosity models to identify and/or control forced or self-sustained
resonances in transitional and turbulent flows (Crouch, Garbaruk & Magidov 2007;
Meliga, Pujals & Serre 2012; Mettot, Sipp & Bézard 2014; Oberleithner, Paschereit &
Wygnanski 2014; Sartor, Mettot & Sipp 2014; Rukes, Paschereit & Oberleithner 2016;
Semeraro et al. 2016a; Tammisola & Juniper 2016). These studies implemented eddy
viscosity on an ad hoc basis, citing improved qualitative agreement or improved integrated
energy densities.

In a more quantitative sense, eddy-viscosity enhanced linear models have also
proven useful for assimilating known data to reconstruct observed energy spectra
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and mean-flow quantities. Moarref & Jovanović (2012) showed that a data-driven,
white-in-time forcing could reproduce the turbulent energy spectrum found via direct
numerical simulation (DNS) and, similarly, Illingworth, Monty & Marusic (2018) could
match DNS energy spectra using time-resolved velocity measurements. More recently,
Towne et al. (2020) showed that incorporating an eddy-viscosity model led to accurate
estimates of space–time statistics using partially known data from DNS. Finally, Pickering
et al. (2020b) used an eddy-viscosity enhanced resolvent model to reconstruct the
large-eddy simulation (LES) acoustic field of transonic and supersonic turbulent jets
at a significantly lower rank when compared to their non-eddy-viscosity enhanced
computations. Other approaches have implemented eddy-viscosity fields to develop
self-consistent models, such as Yim, Meliga & Gallaire (2019) or Hwang & Eckhardt
(2020), where the former study coupled a harmonically forced, quasi-linear resolvent
analysis with Reynolds-averaged Navier–Stokes (RANS) equations, citing eddy viscosity
as a necessary link between the coherent and incoherent perturbation dynamics.

Although the utility of eddy-viscosity enhanced linear models for turbulent modelling
and control has become increasingly apparent, a quantitative assessment of their effect on
turbulent structures is lacking; even more, it is unclear which statistics turbulence models
should seek to predict. One appealing target is modes educed by spectral proper orthogonal
decomposition (SPOD), as these modes optimally reconstruct the turbulent kinetic energy
and represent space–time coherent structures (Towne, Schmidt & Colonius 2018). In fact,
the SPOD has a theoretical connection with resolvent analysis. Towne et al. (2018) showed
that if the resolvent forcing modes, at a given frequency and wavenumber, are mutually
uncorrelated, then the resolvent response modes are identical to the SPOD modes.
Likewise, discrepancies between the SPOD and resolvent modes imply correlated forcing
modes. Morra et al. (2019) applied a similar line of thinking by including an eddy viscosity
in their resolvent analysis of turbulent channel flow, showing that the resulting resolvent
modes were in greater agreement with the SPOD modes educed from high-fidelity
simulation data than resolvent analysis using only molecular viscosity. We extend this
approach to turbulent jets, but consider a more general framework. The central question
we ask is: How well can the inclusion of an eddy-viscosity model in the resolvent operator
approximate the correlations of the forcing cross-spectral density tensor? In this approach,
an ideal model would render any remaining forcing as uncorrelated, meaning that the
resolvent and SPOD modes coincide. We therefore define a data-informed variational
problem that seeks an optimal eddy-viscosity field that maximizes the projection of the
first SPOD mode on the first resolvent mode. We then show that we can achieve nearly
optimal projections using standard eddy-viscosity models, including one directly inferred
from a corresponding RANS simulation.

The work presented here is also relevant to a broader debate taking place regarding
the interpretation of resolvent analysis. Since we can define the resolvent operator
from the full nonlinear equations without introducing approximations or closures, it is
attractive to proceed without introducing ad hoc models such as eddy viscosity, since
we can still consider the framework exact. With a minor caveat (i.e. while exact, the
resolvent decomposition is not necessarily unique as it can depend on the choice of
dependent variables used to express the governing equations, see Karban et al. 2020),
this implies that the forcing terms are physically interpretable (i.e. measurable) quantities.
This perspective is, in our opinion, valuable, and may be pursued alongside efforts
(such as the present work) aimed at empirically modelling the forcing. However, there
is a subtlety that confounds the separation between ‘exact’ and ‘modelled’ resolvent
analyses: namely, it may not be possible to compute, with meaningful accuracy, the exact
resolvent modes in high Reynolds number flows, particularly when the mean flow is

917 A29-3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
09

 Ju
l 2

02
1 

at
 1

3:
42

:3
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
23

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.232


E. Pickering and others

two- or three-dimensional. The fine-scale structure of the modes can require resolutions
similar to DNS, and inversion of the resulting linear systems for singular value
decomposition can be prohibitive. A survey of resolvent analyses conducted to date on
multidimensional base flows shows that a variety of regularizations of the resolvent
operator have been used to reduce the computational burden. By regularizations, we
mean linear modifications to the operator that, whether through physical or numerical
justification, provide results that are free from numerical artefacts or which more
closely resemble observed quantities. These include the use of eddy-viscosity models
(as discussed at length above), fourth-order numerical filters (Jeun et al. 2016), effective
Reynolds numbers (Schmidt et al. 2018) and linear damping (Yeh & Taira 2019).

From a more general perspective, the present work also has a connection to the building
of data-augmented turbulence models (Duraisamy, Iaccarino & Xiao 2019). Here, we
specifically target the modelling of unsteady features (Wang et al. 2018; Maulik et al. 2019)
and the optimal eddy-viscosity fields found, at each frequency–wavenumber pair, which
are analogous to field-inversion steps (also based on variational data-assimilation methods,
Foures et al. 2014; Parish & Duraisamy 2016) that assist machine learning techniques in
generating eddy-viscosity models from mean-flow quantities.

We organize the paper as follows. In § 2 we outline the governing equations, resolvent
analysis and SPOD. In § 3 we discuss the optimization framework developed to match,
or align, SPOD and resolvent modes, and the specific eddy-viscosity models examined.
Section 4 provides the resulting resolvent mode shapes found via the four eddy-viscosity
models and § 5 analyses the associated optimal eddy-viscosity fields. In § 6 we show
a favourable impact of the eddy-viscosity models on the subdominant resolvent modes
and then conclude the analysis in § 7 by assessing the sensitivity of the RANS
eddy-viscosity model. In this final section, we ultimately find a frequency-independent
RANS eddy-viscosity field that performs well for three turbulent jets (i.e. subsonic,
transonic, and supersonic) and their most energetic frequencies (St � [0.05, 1]) and
azimuthal wavenumbers (m � N � [0, 5]).

2. Methods

The LES database, resolvent analysis and SPOD were described in Schmidt et al. (2018)
and Towne et al. (2018). For brevity, we only recall the main details here.

2.1. Large-eddy simulation database
The flow solver Charles was used to compute the LES databases, including subsonic
(Mach 0.4), transonic (Mach 0.9) and supersonic (Mach 1.5) cases; Brès et al. (2017)
contains the details on the numerical method, meshing and subgrid models. Experiments
conducted at PPRIME Institute, Poitiers, France were used to validate the Mach 0.4 and
0.9 jets (Brès et al. 2018). Table 1 provides a summary of parameters for the three jets
considered. Parameters include the Reynolds number based on diameter Rej = ρjUjD/μj
(where subscript j specifies the value at the centreline of the jet nozzle exit, ρ is density,
μ is viscosity) and the Mach number, Mj = Uj/aj, where aj is the speed of sound. The
simulated Mj = 0.4 jet corresponds to the experiments in Cavalieri et al. (2013), Jaunet,
Jordan & Cavalieri (2017) and Nogueira et al. (2019) with the same nozzle geometry and
similar boundary-layer properties at the nozzle exit. Throughout the manuscript, reported
results are non-dimensionalized by the mean jet velocity Uj, jet diameter D and dynamic
pressure ρjU2

j . We report frequencies in Strouhal number, St = fD/Uj, where f is the
frequency.
917 A29-4
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Case Mj Rej p0/p� T0/T� ncells �ta�/D �St

Subsonic 0.4 4.5 × 105 1.117 1.03 15.9 × 106 0.2 0.049
Transonic 0.9 1.01 × 106 1.7 1.15 15.9 × 106 0.2 0.022
Supersonic 1.5 1.76 × 106 3.67 1.45 31 × 106 0.1 0.026

Table 1. Parameters, sampling rate and frequency resolution for the LES. p0/p� is the nozzle pressure ratio,
T0/T� is the temperature ratio, and ncells is the number of cells for each simulation.

Each database comprises 10 000 snapshots separated by �ta�/D, where a� is the
ambient speed of sound, and is interpolated onto a structured cylindrical grid x, r, θ �
[0, 30] × [0, 6] × [0, 2�], where x, r, θ are streamwise, radial and azimuthal coordinates,
respectively. Variables are reported by the vector

q = [ρ, ux, ur, uθ , T]T, (2.1)

where ux, ur, uθ are the three velocity components, and a standard Reynolds decomposition
separates the vector into mean, flq, and fluctuating, q�, components

q(x, r, θ, t) = flq(x, r) + q�(x, r, θ, t). (2.2)

2.2. Resolvent analysis
We start with the nonlinear flow equations of the form

∂q
∂t

= F (q), (2.3)

where F is the time-independent compressible Navier–Stokes operator (plus continuity
and energy). Substituting (2.2) for q and separating terms linear in state perturbations, q�,
to the left-hand side gives

∂q�

∂t
� A(flq)q� = f (flq, q�), (2.4)

where

A(flq) =
∂F
∂q

(flq), (2.5)

is the linearized flow operator (provided in Appendix B) and f contains the nonlinear
terms and any additional external inputs (e.g. environmental noise or perturbations at the
boundary).

For the round, statistically stationary turbulent jets we consider, (2.4) is Fourier
transformed both temporally and azimuthally to the compact expression

(iωI � Am)qm,ω = f m,ω, (2.6)

where ω = 2�St is the frequency and m represents the azimuthal wavenumber. We can
then rewrite (2.6) by defining the resolvent operator, Rω,m = (iωI � Am)�1,

qm,ω = Rm,ω f m,ω, (2.7)

and introduce the compressible energy norm (Chu 1965) via the matrix W ,

�q1, q2�E =
���

q�
1diag

� flT
γ flρM2 , flρ, flρ, flρ,

flρ
γ (γ � 1) flTM2

�
q2r dr dx dθ = q�

1W q2,

(2.8)
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E. Pickering and others

to the forcing and response, where W = W f = W q. The resolvent modes under this norm
are then found by taking the singular value decomposition of the weighted resolvent
operator,

�Rm,ω = W 1/2
q Rm,ωW �1/2

f = �Um,ω�m,ω
�V �

m,ω, (2.9)

where the diagonal matrix �m,ω contains the ranked gains and the columns of
Um,ω = W �1/2

q �Um,ω and V m,ω = W �1/2
f

�V m,ω contain the response and forcing modes,
respectively. These modes are orthonormal in the energy norm, (2.8),

U�
m,ωW Um,ω = V �

m,ωW V m,ω = I, (2.10)

and recover the resolvent operator from (2.7) as,

Rm,ω = Um,ω�m,ωV �
m,ωW . (2.11)

For the resolvent analysis presented here, just as in Schmidt et al. (2018), the above
equations are discretized in the streamwise and radial directions with fourth-order
summation by parts finite differences (Mattsson & Nordström 2004), while the polar
singularity is treated as in Mohseni & Colonius (2000) and non-reflecting boundary
conditions are implemented at the domain boundaries.

2.3. Spectral proper orthogonal decomposition
SPOD, similar to space-only proper orthogonal decomposition (POD) and originally
shown by Lumley (1967, 1970), determines an optimal (i.e. in terms of energy) set of
orthogonal modes to describe a dataset, but unlike space-only POD, produces modes
that express both spatial and temporal correlation in the data. Like dynamic mode
decomposition, SPOD modes are computed at unique frequencies. However, through
appropriate averaging, SPOD naturally ranks modes by energy and optimally accounts
for the statistical variability of turbulent flows (Towne et al. 2018). Thus, the associated
SPOD modes provide the ideal measurement tool to assess modes computed via resolvent
analysis.

Decomposing the LES database Q, where Q represents the temporal ensemble
of perturbations (q�) found by applying the standard Reynolds decomposition, in
the azimuthal and temporal dimensions via the discrete Fourier transform gives the
decomposed data matrices, �Qm,ω. Multiplying the decomposed matrices, at a particular
frequency and azimuthal wavenumber, by their complex conjugate give the cross-spectral
density

Sm,ω = �Qm,ω
�Q�

m,ω, (2.12)

to which we solve the SPOD eigenvalue problem presented by Lumley (1967, 1970)

Sm,ωW� m,ω = � m,ω�m,ω. (2.13)

The SPOD modes form the columns of � m,ω, ranked by the diagonal matrix of eigenvalues
�m,ω = diag(�1, �2, . . . , �N). The modes are orthonormal in the norm �•, •�E, and satisfy
� �

m,ωW� m,ω = I . As a result, expansion of the cross-spectral density tensor gives,

Sm,ω = � m,ω�m,ω� �
m,ω. (2.14)

In this study, we perform all SPOD computations with a Hamming window and realization
sizes of 256 snapshots with 50 % overlap, resulting in 78 independent realizations.
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Optimal eddy viscosity for resolvent-based models

To avoid ambiguity in referring to computed SPOD and resolvent modes, we use the
following notation for the rest of the manuscript. First, all computed mode’s subscripts
m, ω are dropped, but referenced when necessary in the text. Second, �n represents the
nth most energetic SPOD mode, while vn and un denote the resolvent forcing and response,
respectively, that provide the nth largest linear-amplification gain between vn and un.
Finally, we use the notation �1 : ux when referring to specific components of each mode,
as shown here with streamwise velocity.

2.4. Using SPOD to inform resolvent analysis
As SPOD provides the optimal description of the second-order flow statistics, we wish
to use this decomposition to inform our resolvent approach to match such statistics. The
connection can be made through multiplication of (2.7) by its complex conjugate and then
applying the expectation operator to present the relation between the cross-spectral density
(CSD) tensors of the forcing and response through the resolvent operator,

Sqq = E[qq�] = E[Rf f �R�] = RSf f R�. (2.15)

If q is projected onto the SPOD modes and f is projected onto the input resolvent modes,
� = V �W f , where the vector � is the projection coefficients, then we may write

� �� � = U�S���U�, (2.16)

which highlights that if the forcing coefficients are uncorrelated (S�� = �� ) then the
resolvent modes would be equivalent to the SPOD modes (Towne et al. 2018). Conversely,
when the resolvent and SPOD modes are not identical, which is the case in our study, the
forcing coefficients are correlated and this correlation must be modelled.

Rather than pursuing a direct model of the forcing coefficients, we take an alternative
perspective that asks whether a modified resolvent operator, RT , can match one or more
of the dominant resolvent and SPOD modes. A trivial solution would be to define
the operator by the SPOD expansion, i.e. RT = � , but this operator then corresponds
to the (discretization of any) general (non-local) linear operator, rather than a specific
partial differential equation (PDE). Instead, a practical model can be obtained by posing
a modified PDE of the linearized governing equations with one or more unknown
coefficients, and then finding the best choice of coefficients such that the resolvent and
SPOD modes are optimally matched. We propose such an approach in the next section by
exploiting an eddy-viscosity model, and develop an optimization procedure that fits the
parameters to align one, or more, of the most dominant resolvent and SPOD modes.

To the extent that the modified resolvent operator achieves alignment of any one of its
output modes with a specific SPOD mode, we may directly interpret the corresponding
diagonal entry of S�� as the forcing amplitude, �β , required to reproduce the SPOD mode
amplitude �, through the resolvent gain, σ 2. In other words,

�n = σ 2
n ��n for any n where un = �n, (2.17)

independent of whether the other modes are aligned (as other modes are orthogonal).

3. Models considered

We now add an eddy-viscosity model to the linearized governing equations (2.4). We
follow the ad hoc model used in (amongst other references) Del Alamo & Jimenez (2006)
and Hwang & Cossu (2010b), which is typically justified by extending eddy viscosity from
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E. Pickering and others

its traditional use in modelling the mean Reynolds stresses to modelling the effect of the
‘background turbulence’ on the coherent motion.

The perturbation equations including the eddy viscosity are, with the replacement
μ 	
 μeff = μj + μT , identical to the original linearized equations, provided one accounts
for the (spatial) variability of μT (equations provided in Appendix B). There remains
an unknown forcing that is the residual between the original forcing and the ‘coherent’
part that is modelled by the eddy viscosity. Unfortunately, the residual forcing no longer
possesses its exact physical interpretation as the nonlinear interactions of resolved modes.
However, the advantage is that the resulting response modes can significantly reduce the
rank of the problem and lead to a residual forcing CSD that is tractable to model when
compared to the forcing CSD of the exactly rearranged equations (Pickering et al. 2020b;
Towne et al. 2020).

In what follows, we refer to the modified linear operator with μT /= 0 as AT and note
that the operator depends on the chosen field for μT , which, upon discretization becomes
a vector µT . Since we assume that μT is steady and axisymmetric, the operators have a
similar temporal/azimuthal Fourier transform that we denote AT m.

Wenowconsiderfourmodelsfortheeddy-viscosityfield.Thefirstmodeldirectlyoptimizes
the eddy-viscosity field to maximize agreement between the dominant resolvent and SPOD
modes. The second model fits an eddy viscosity to the LES mean flow by minimizing the
residual in the steady RANS equations. The third model uses an independently computed
eddy-viscosity field from a RANS k � ε model. Finally, we consider a simpler constant
eddy-viscosity model based solely upon a turbulent Reynolds number.

For brevity, we refer to the modes computed with the above eddy-viscosity models as
EVRA (eddy-viscosity resolvent analysis) modes, while modes termed ‘baseline’ refer
to those computed by Schmidt et al. (2018). We chose this study as a reference for its
extensive comparison of resolvent and SPOD modes across all three turbulent jets and
many wavenumbers and frequencies. In the baseline study, they chose an effective Reynolds
number of ReT = 3 × 104, a value that is an order of magnitude smaller than the molecular
Reynolds number, yet not consistent with the expected magnitude of an eddy viscosity
(i.e. ReT � 3 × 104) . Instead, we regard this intermediate value as a regularization of the
resolvent operator. Table 2 summarizes the various models investigated.

For exploratory purposes, we find an eddy-viscosity field that best matches the
(so modified) resolvent operator to the measured SPOD modes independently for
each frequency and azimuthal mode. The purpose is to gauge the sensitivity of the
eddy-viscosity value needed to model the different frequencies and azimuthal modes, and
should not be interpreted as a proposal for a frequency-dependent eddy viscosity.

Parenthetically, within the following optimization framework we can consider any
turbulence model or regularization based on mean-flow quantities. A further example is
given in Appendix A, where we consider a linear damping model recently proposed for
resolvent analysis of unstable base flows (Yeh & Taira 2019). In the appendix, we find that
the linear damping improves agreement, but the performance is generally inferior to the
eddy-viscosity models. This is likely due to the monolithic damping effect over all regions
and wavenumbers, whereas the eddy-viscosity methods directly address the effect of the
Reynolds stresses both in regard to specific regions of the flow and the approach’s ability
to account for spatial gradients in the eddy-viscosity field.

3.1. Optimal eddy-viscosity field
Here we develop an optimization, computed independently for each frequency and
azimuthal mode, that finds the eddy-viscosity field that is optimal (i.e. the upper bound)
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Optimal eddy viscosity for resolvent-based models

Turbulence model µT form Optimal parameter LES data used Abbreviation

Baseline* 1/ReT = 3.fl3 × 10�5 — — Baseline
Optimal field µT (x) µT (x) � Opt. µT
Mean-flow consistent cµT (x) c flq Mean µT
RANS c flρCμk2/ε c — RANS µT
Turbulent Re 1/ReT 1/ReT — ReT,Opt

Table 2. Turbulence models investigated in this study. The baseline* case refers to the results of Schmidt
et al. (2018).

in matching the leading resolvent and SPOD modes. To find the analytical expression
that determines the sensitivity of mode agreement to an eddy-viscosity field, we use a
Lagrangian technique analogous to Brandt et al. (2011) that accounts for the non-modal
behaviour of the resolvent operator. This technique couples constraints from the governing
equations, resolvent analysis, a normalization, and a cost function (agreement of the
leading SPOD and resolvent modes), into a Lagrangian functional for whose stationary
point provides the desired maximum.

To build the Lagrangian functional, we begin with the forward equation (2.6) and
substitute L with LT , the linear operator that includes an eddy-viscosity model. The
singular value/singular vector (v1, u1, σ1) as defined in (2.11) is a solution of both the
forward equation (2.6),

v1 = LTu1, (3.1)

where v1 replaces f as the forcing and u1 replaces q as the associated response, and the
resolvent eigenvalue problem,

W u1 = σ 2
1 L�

TWv1. (3.2)

The above resolvent eigenvalue solution is found by taking the energy norm of (2.7) and
dividing by the forcing energy to give

u�
1W u1

v�
1Wv1

= σ 2
1 =

v�
1R�

TW RTv1

v�
1Wv1

. (3.3)

Rearranging and eliminating v�
n we arrive at

R�
TW RTv1 = σ 2

1 Wv1, (3.4)

where replacing RTv1 with u1 and multiplying both sides by R��
T = L�

T recovers (3.2).
Finally, we define a normalization constraint via,

�u1, u1�E = u�
1W u1 = 1. (3.5)

The last component of the Lagrangian functional is the cost function,

J = u�
1W�1�

�
1W u1 � l2µ�

TMµT , (3.6)

where the first term, representing the primary objective, measures the squared projection,
what we term the alignment or agreement, between the dominant SPOD mode, �1, and
the first resolvent mode, u1. The alignment measure, u�

1W�1, is squared to ensure the cost
function is real. For brevity, we denote the outer product of the dominant SPOD mode as
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E. Pickering and others

� 1 = �1�
�
1 = � �

1. The cost function may also consider multiple resolvent/SPOD modes
by considering a (weighted if desired) sum of the squared alignment terms.

The second term, �l2µ�
TMµT , is a Tikhonov regularization that penalizes values of

µT that do not affect the alignment (high values of µT diminish the value of J ), with
M representing the cylindrical quadrature weights of the grid. As done in standard
regularization methods, the value of l2 is chosen high enough to remove the values of
µT in insensitive regions, but also sufficiently small to not interfere with the primary
objective (Hansen & O’Leary 1993). This penalization is effective at minimizing the eddy
viscosity in non-turbulent regions of the flow such as the far field. A substantial range of l2
values (i.e. multiple orders of magnitude) removes negligible regions of the eddy-viscosity
field from the initial field without an observable drop in the primary objective, alignment
between u1 and �1.

We now formally construct the Lagrangian functional to include the cost function (3.6),
forward equation (3.1), the resolvent eigenvalue problem (3.2), and the normalization
constraint (3.5) to give,

L = u�
1W� 1W u1 � l2µ�

TMµT

� �u�
1(LTu1 � v1) � �v�

1(W u1 � σ 2
1 L�

TWv1) � �σ1(u�
1W u1 � 1) + c.c., (3.7)

where ( �u1, �v1, �σ1) are Lagrange multipliers, �σ1 is real valued (as the corresponding
constraint is real) and c.c. is the complex conjugate. This results in a functional that
depends on seven variables,

L([u1, v1, σ1], [ �u1, �v1, �σ1], µT). (3.8)

We can find the maximum of the cost function by finding the stationary point of the
entire functional (i.e. where variations with respect to each variable are zero). Stationarity
with respect to the Lagrange multipliers yields the state equations, which are by definition
satisfied, while stationarity with respect to the state variables yields

∂L
∂u1

δu1 = (2W� 1W u1 � L�
T �u1 � W �v1 � 2 �σ1W u1)�δu1 = 0, (3.9)

∂L
∂v1

δv1 = ( �u1 + σ 2
1 W LT �v1)�δv1 = 0, (3.10)

∂L
∂σ1

δσ1 = (�v�
1L�

TWv1)�δσ1 = 0, (3.11)

and the condition in the last equation may be simplified into �v�
1L�

TWv1 = �v�
1W u1 using

(3.2). The stationary point is subsequently met by constructing the following system of
equations and solving for the Lagrange multipliers

�

�
�L�

T �W �2W u1
W �1 LTσ 2

1 0
0 u�

1W 0

�

�

�

�
	u1
	v1
�σ1

�

� =

�

�
�2W� 1W u1

0
0

�

� . (3.12)

The upper left 2 × 2 block is degenerate due to the state (3.1) and (3.2) (the couple,
�u1 = Wv1 and �v1 = �σ�2

1 u1, is in the null space of this block) and the third column
and line regularizes this system. Combining the three equations, one can show that
�σ1 = u�

1W� 1W u1, proving that �σ1 is a real value.
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Optimal eddy viscosity for resolvent-based models

Algorithm 1 Optimization

1: Initialize. Choose an initial eddy-viscosity/turbulence model and target SPOD mode.
2: while dJ /dµT /= 0 do
3: Compute the EVRA mode(s).
4: Solve for the Lagrange multipliers.
5: Calculate the update direction, dJ /dµT .
6: Determine the optimal value of the step α by repeated evaluation of the cost

functional along the steepest ascent direction.
7: end while

A final variation is taken with respect to the eddy viscosity, µT (which may be a scalar
or vector quantity), providing the direction of gradient ascent for the eddy-viscosity field,

∂L
∂µT

δµT = ��u�
1

�
∂LT

∂µT
δµT

�
u1 + σ 2

1 �v�
1

�
∂L�

T
∂µT

δµT

�
Wv1 � 2l2µ�

TMδµT + c.c.

(3.13)

=
�

dJ
dµT

��
MδµT . (3.14)

The gradient at the kth grid point is then

dJ
dµT






k

= M�1
km (�u�

1,jL
�
m,ij �u1,i + σ 2

1 W ljv�
1,lLm,ji �v1,i) � 2l2µT,k + c.c., (3.15)

where Lm,ij = limε
0((LT+εδµm,ij � LT,ij)/ε), δµm being a null vector except at the mth
position where it is equal to 1. This tensor may be obtained either through automatic
differentiation of LT with respect to µT or by finite differences. Full storage of such tensors
is not an issue when finite differences, finite volumes or finite elements are used for the
spatial discretization as the resulting tensors are extremely sparse.

The updated optimization parameter is then

µ(k+1)
T = µ(k)

T + α
dJ
dµT

, (3.16)

where k is the iteration number and α is a step size determined through a root finding
algorithm or a line search. If multiple SPOD/resolvent modes are considered for the
optimization, then one has to solve (3.12) for each couple [� n, (vn, un, σn)] and the
total gradient dJ /dµT is the sum of each individual gradient, while the line search
for α is performed considering the full cost functional. Although considering multiple
modes is theoretically straightforward (and we present one example in § 6), there are two
practical issues. Each additional mode brings further complexity to the gradient, increasing
computation time, and the quality of SPOD modes, � n, become increasingly noisy with n,
thus rendering gains via the optimization as marginal. We discuss the latter issue in more
detail throughout the manuscript. Figure 1 presents a schematic of the above optimization
framework, including graphical examples from the optimal eddy-viscosity field case at
St = 0.6, m = 0 and Mj = 0.4.

For some cases, the optimization step imparts a region of negative effective viscosity
(i.e. �μT > μj) presenting a challenge in both the physical interpretation and the
numerical stability of the resolvent operator. However, negative eddy viscosity is not
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Initial turbulence
model

Optimization

Resolvent analysis

Solve multipliersCalculate update step
dJ /dµT

dJ /dµT � 0

max{J }

SPOD

q = RT (µT ) f
u1

�1

v1

u�1

� �1

v�1

f (µT,0)

f (µT,k+1)

µT,k+1

µT,0

�1

Figure 1. Schematic of the optimization framework for determining the optimal eddy-viscosity field that
maximizes the alignment/agreement between computed resolvent modes, u1, and educed SPOD modes, �1.
Included graphics are from implementation of the full-field eddy-viscosity model at St = 0.6, m = 0, and
Mj = 0.4.

a unique concept to the algorithm presented. Literature surrounding eddy-viscosity
models used in RANS and LES, where the eddy and effective viscosities are identical,
attribute physical interpretations of negative eddy viscosity to backscattering of turbulent
energy, which, in many simulations, results in unstable simulations (Ghosal et al.
1995). Common treatment of a negative eddy viscosity has included filtering operations,
ensemble averaging in homogeneous directions, and ad hoc clipping of the eddy-viscosity
field (Vreman 2004), while inferences of the eddy-viscosity field via a Boussinesq
approximation of data are often regularized to remove negative regions (e.g. Semeraro
et al. 2016b). Here, we similarly elect to remove any negative effective viscosity using a
simple clipping strategy by setting any negative regions to the molecular value. Although
a reduction of effective viscosity below the molecular viscosity is theoretically possible,
we found that permitting the optimization to do so either led to numerical instabilities or
negligible improvements in alignment.

The topology of the proposed cost function is complex, as µT involves many degrees
of freedom, and our optimizer may return a local rather than global maximum. Therefore,
a complete assessment of the sensitivity of initial conditions or demonstration of a global
maximum is intractable, but the relative insensitivity of the results to initial guesses and
the fact that no other considered method outperforms the full optimization (shown later
in figure 4) provides confidence in the robustness of the maxima achieved. For all of the
results presented here, we use the optimal constant eddy-viscosity field results (introduced
in § 3.4) as the initial condition for the full-field optimizations.

Finally, the above optimization is derived considering the full (perturbation) state as the
output. The formulation is similar if the input and output spaces are restricted, as shown in
Appendix C. Such an extension is of particular use for experiments, or coarse simulations,
where observed data may be sparse.

3.2. Mean-flow consistent eddy-viscosity model
For many experimental and numerical datasets, including the LES databases used here,
an eddy-viscosity field is absent. We circumvent this issue by finding the eddy-viscosity
field that minimizes the error to which the mean flow satisfies the (zero frequency and
axisymmetric wavenumber) linearized Navier–Stokes equations, supplemented with an
eddy-viscosity model, provided in Appendix B. To do so, we find an eddy-viscosity field
that minimizes the residual flf given by

LT flq = flf . (3.17)
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(b)

(a)

4

2r/D

x/D
0 5 10 15 20 25 30

4

2r/D

0 5 10 15 20 25 30

0.02

0.01

0

0.02

0.01

0

Figure 2. (a) Mean-flow consistent eddy-viscosity model computed at zero frequency and azimuthal
wavenumber. (b) Eddy-viscosity field computed via a RANS simulation for the Mj = 0.4 jet, c = 1.

Thus we define the cost function,

J = �flf �W flf , (3.18)

and develop a Lagrangian functional with the forward equation as the only additional
constraint to give

L = �flf �W flf � �u�(LT flq � flf ). (3.19)

Variations with respect to the residual are

∂L
∂ flf

δ flf = (�2W flf + �u)�δ flf = 0, (3.20)

and we may directly solve for the Lagrange multipliers as,

�u = �2W flf . (3.21)

Then by taking variations with respect to the eddy-viscosity field gives,

∂L
∂µT

δµT = �2(W flf )�
�

∂LT

∂µT
δµT

�
flq. (3.22)

Similar to (3.15), we obtain the update step

dJ
dµT






k

= �2M�1
km flqjLm,ijW il flf l, (3.23)

and find the field via a line search. These steps are described in greater detail in the
preceding subsection § 3.1. Figure 2(a) provides the eddy-viscosity field that optimally
minimizes the residual of the mean-flow solution. The associated residual field for this
model reduced errors to approximately 10 % of the original residual field, with the
exception where the shear layer is thin near the nozzle. The thin shear-layer region
improved by only �50 %, but as shown later in the manuscript, modes in this region are
generally less sensitive to the eddy-viscosity field.

We refer to this model as the mean-flow consistent eddy-viscosity model, and we
optimally tune this field at each frequency by introducing the coefficient, c, µT =
cµT,Mean. Our interest in the value of c is not to propose a functional of its frequency
dependence (or assign to it a physical meaning), but to measure and observe the overall
variation and help determine whether a frequency independent coefficient might suffice.
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3.3. RANS-based eddy-viscosity field
We compute steady-state RANS solutions for each case to assess the applicability of
the associated eddy-viscosity field for resolvent analysis. For simplicity, we perform the
RANS computations in Fluent. The 2D axisymmetric grid extends 40 diameters in the
streamwise directions and 20 diameters in the radial direction with grid spacing mirroring
that of the interpolated LES grid scaled to be four times finer, giving 3 × 105 grid points.
We set the inlet boundary conditions to the base-flow profile from the LES simulations
and use the standard 2-equation k � ε model (Launder & Spalding 1983) for turbulence
modelling. Coefficients used for the model are variants of those suggested by Thies & Tam
(1996), with turbulent viscosity coefficient Cμ = 0.0874, dissipation transport coefficients
Cε1 = 1.4 and Cε2 = 2.02, turbulent Prandtl numbers for kinetic energy σk = 0.324 and
dissipation σε = 0.377, and the turbulent Prandtl number PrT = 0.422. However, the
standard κ � ε model provided in ANSYS does not incorporate the Pope (1978) and Sarkar
et al. (1991) correction terms used in Thies & Tam (1996), requiring a calibration of the
mean-flow quantities by introducing a scaling constant a to Cμ = 0.0874/a, σK = 0.324/a
and σε = 0.377/a.

RANS mean-flow quantities closely match those of the LES for each of the three
turbulent jets using values for a of 1.2, 1.3 and 1.575, for Mj = 0.4, 0.9 and 1.5,
respectively. While tuning of the constant a to match LES is not in the spirit of obtaining
a universal RANS model, we do so here to give the RANS-generated eddy-viscosity field
the best chance at being consistent with the LES results from which the SPOD modes were
educed. For a full assessment of the accuracy of RANS predictions for turbulent jets, we
refer the reader to Thies & Tam (1996) and Georgiadis, Yoder & Engblom (2006).

Figure 2(b) presents the RANS-predicted eddy-viscosity field for the Mj = 0.4 jet, and
figure 3 shows near identical agreement with the mean LES streamwise flow. We observe
similar agreement in radial velocity, density and turbulent kinetic energy, and also find
close agreement for the Mj = 0.9 and 1.5 jets; we do not show these results for brevity. For
determination of the optimal RANS-based eddy-viscosity field at each frequency, we take
the computed eddy-viscosity fields,

µT,RANS = flρCμ

k2

ε
, (3.24)

and introduce the coefficient, c, µT = cµT,RANS (just as in § 3.2). This final relation
underscores the difference between the traditional use of eddy viscosity with RANS
and ours via resolvent analysis. In the former context, eddy viscosity accounts for all
perturbations, while in resolvent analysis, the eddy viscosity is intended to model the effect
of nonlinear, triadic interactions and the background turbulence on the linear structures.
Thus, a coefficient of c < 1, for resolvent analysis, presents an eddy viscosity that omits a
fraction of the overall eddy-viscosity field. As will be shown, we find all optimal values for
c to be less than unity. This interpretation may also be applied to the mean-flow consistent
eddy-viscosity field presented in the previous sub-section.

3.4. Constant eddy-viscosity field
Finally, we consider a simple, constant eddy viscosity, µT = 1/ReT . We primarily
investigate this model because of its use in many turbulent jet studies that used a Reynolds
number based either upon the molecular viscosity (Jeun et al. 2016; Lesshafft et al. 2019),
of the order of 105 � 106, or through an effective turbulent viscosity (Garnaud et al.
2013; Schmidt et al. 2018), of the order of 103 � 104. These, quite different, choices
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1.0 1.5

1.0

0.5

0

0.8
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0.4

0.2
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RANS

30 0.5 1.0
x/D

r/DU–/Uj

U–/Uj

(b)(a)

Figure 3. Mean-flow profiles of both the Mj = 0.4 LES and RANS, where the RANS simulation was tuned to
best match the LES mean flow. (a) Presents the streamwise mean velocity at three radial locations, r/D =
0.25, 0.5, 1, vs streamwise distance from the nozzle, while (b) gives the streamwise mean velocity at
three streamwise locations, x/D = 0.5, 5, 10, vs radial distance.

inevitably provided discrepancies in amplification gains and mode shapes across each
study, particularly at low frequencies (i.e. St < 0.3 for m = 0) – showing that the Reynolds
stresses have a substantial impact on resolvent analyses of turbulent jets. Here, we find the
optimal ReT at each frequency and azimuthal mode number by a line search.

4. Optimal SPOD and resolvent mode alignment

In this section, we present modes predicted by the various EVRA models presented
in the previous section. We focus on the axisymmetric disturbances, m = 0, for the
Mj = 0.4 jet, and report results for other azimuthal modes and jet Mach numbers in
§ 7. We performed optimizations over the frequency range St � [0.05, 1], resulting in the
alignment coefficients displayed in figure 4, with alignment defined as |��

1W u1|. This
metric not only represents how similar the spatial structures, represented as complex
eigenfunctions, are between the dominant resolvent and SPOD modes, but also measures
the similarity in distribution of energy amongst the five state variables. A value of 1
signifies perfect agreement, giving both identical agreement in structure and distribution
of energy in the state variables. Typically, in this metric, values of approximately 0.4
or greater show qualitative agreement, whereas values less than 0.4 have little visual
similarity.

Figure 4(a) shows that throughout the frequency range considered, the alignments
improve considerably from the baseline case (constant eddy viscosity with ReT = 3 ×
104). The alignment is best for St > 0.3, which corresponds to the frequencies where
the jet has a strong, low-rank Kelvin–Helmholtz (KH) response (Schmidt et al. 2018),
as highlighted by figure 4(b), presenting the spectra of the first five SPOD modes and their
95 % confidence interval. For this region, St > 0.3, the baseline case gives reasonable
(¿ 75 % alignment) results, nonetheless, the eddy-viscosity models still improve the
modes to nearly perfect alignment. At lower frequencies, St 
 0.3, we find the most
dramatic increase in alignments, from approximately 10 % to 80 %. These substantial
improvements, at St 
 0.3, coincide with a change of mode type, from KH to Orr (Schmidt
et al. 2018), a viscous, non-modal instability mechanism sensitive to Reynolds number
(with rapidly increasing amplification as Reynolds number increases), that dominates the
non-optimized, low-frequency and subdominant regions of the resolvent spectrum for
the Mj = 0.4 jet. We also find that the optimal eddy-viscosity field provides the greatest
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Figure 4. (a) Optimal alignments for all methods investigated including the baseline case, ReT = 3 × 104. (b)
SPOD eigenvalue spectra of the first five modes for m = 0, including the 95 % confidence intervals and the
modes associated with the KH and Orr mechanisms.

alignment among the models, which is at least suggestive that the optimization achieved a
global maximum.

Surprisingly, the other eddy-viscosity models produce alignments close to the optimal
eddy-viscosity field. The constant eddy-viscosity is nearly optimal at lower frequencies
(Orr-type modes), whereas the RANS and optimal mean-flow eddy-viscosity models are
more nearly optimal at higher ones. We stress that in the optimal mean-flow, RANS and
constant µT models, a different optimal value of the coefficient (i.e. c and ReT ) is used at
each frequency. We defer a discussion of the sensitivity of these coefficients to § 7.1.

Starting with the lowest frequency, St = 0.05, we now investigate the mode shapes
associated with the improved resolvent alignments achieved with the optimized
eddy-viscosity models. Figure 5 displays the real part of the fluctuating field for all state
variables for the dominant SPOD and resolvent modes, comparing resolvent results using
both the optimal eddy-viscosity field and the baseline case with constant ReT = 3 × 104. It
is immediately apparent that the optimal eddy-viscosity resolvent mode can closely match
the observed mode shapes from SPOD for all variables (including the correct distribution
of energy), while the baseline resolvent mode bears little resemblance to the SPOD modes
for any of the variables.

Despite the increased alignment, there remains an obvious mismatch in u�
θ between

the SPOD and resolvent modes, highlighting a statistical limitation to our approach. For
the axisymmetric wavenumber, m = 0, perturbations in the azimuthal velocity must be
zero. Both resolvent models meet this constraint, however, the SPOD mode does not.
One should then view the non-zero component in the SPOD mode as a statistical error.
Compared to the streamwise velocity, u�

θ is approximately five times smaller in magnitude,
and lacks the coherent wavepacket structure of the other variables. The corresponding
u�

θ contribution in the projection coefficient |��
1W�1| is � 0.08, bounding the physical

maximum of the optimization to |��
1W u1| 
 0.92 without considering additional error

in the other variables. We link these statistical errors to the weak low-rank behaviour
with this frequency, where there is little eigenvalue separation between the dominant and
subdominant modes (Schmidt et al. 2018). We may then view the projection-coefficient
value of 0.08 as a kind of error bar on the alignments produced by the optimal
eddy-viscosity field, as it is attempting to align to a mode shape that is (at this frequency)
in error by as much as approximately10 %.

The pressure field, a quantity of particular interest for jet noise, provides a relatively
simple representative mode shape for each case. We proceed by visualizing only
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x/D x/D x/D

20 30 10 20 30 10 20 30

Optimal µT Baseline

Figure 5. Real component of the fluctuating response state variables, q� = [ρ, ux, ur, uθ , T], and pressure,
p, at St = 0.05, m = 0. The columns display SPOD (�1), optimal eddy viscosity (u1), and baseline (u1)
modes from left to right, respectively. Contours (in red, black and blue) are given by –0.5��1 : •�� of the
SPOD mode, where • is the fluctuating variable in question (with ��1 : •�� values: [ρ, ux, ur, uθ , T, p] =
[2.8, 198.6, 46.0, 37.2, 1.2, 10.4] × 10�3).

the fluctuating pressure component for the rest of the study, however, the projection
coefficients, |��

1W u1|, account for the full-state results. Further, for all response pressure
modes presented, we see similar trends and improvements in all flow variables similar to
figure 5.

Figure 6 shows the pressure modes at two low frequencies, St = 0.05 and 0.2, and
compares the results for all considered eddy-viscosity models. The top row shows the
dominant SPOD mode from the LES, the second row gives the dominant resolvent mode
for the baseline case, and the remaining rows provide the four optimized models. At low
frequencies, the baseline resolvent analysis cannot capture the observed mode shapes,
while the optimized eddy-viscosity models have much better alignment with SPOD. The
EVRA models increase the projection coefficients by as much as 10-fold and display
a wavepacket structure consistent with the SPOD mode. Orr-type modes dominate the
low-frequency (i.e. St < 0.3) baseline resolvent spectrum (Schmidt et al. 2018), and we
see that the eddy viscosity attenuates these modes in favour of a KH-like response that
peaks further upstream, consistent with the observed SPOD modes.

Proceeding to higher frequencies, figure 7 displays the dominant fluctuating pressure
modes for SPOD and the five EVRA models for St = 0.6 and 1. The baseline projection
coefficients are already high for these frequencies, but are further increased with the
eddy-viscosity models, reaching 96 % for the optimal eddy viscosity. Here the differences
in the mode shapes are subtle, with the streamwise extent of the modes shortening
from the baseline case to better match the SPOD at both frequencies. At these higher
frequencies, the jet response is a clear, low-rank KH wavepacket (a modal, inviscid
stability mechanism), and it is thus unsurprising that the results are relatively insensitive
to the precise eddy-viscosity model. However, the improved alignment is a product of the
non-zero eddy-viscosity field, showing that a turbulence model is still important.

For St = 1, the optimized projection coefficient is falling compared to the St = 0.6 case.
This is due to the emergence of Orr-type modes with similar energy as the KH modes.
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Figure 6. Real component of the response pressure fluctuations (in red, black and blue, –0.5��1 : p��)
for St = 0.05 and St = 0.2 in the left and right columns, respectively. Row 1 presents the dominant SPOD
mode for which the optimization seeks to match. The following rows present results for the baseline, optimal
eddy-viscosity field, mean-flow consistent model, RANS eddy-viscosity model and the optimal turbulent
Reynolds number.

When performing SPOD in limited domains near the nozzle exit, the modal, low-rank
KH response continues to dominate at much higher frequencies in the near nozzle region
(Sasaki et al. 2017), but when considering the global response, the KH response becomes
inferior, in energy, to the Orr response, which peaks further downstream.

5. Analysis of the optimized eddy-viscosity fields

The previous section shows that the EVRA approach results in substantial alignment of the
dominant resolvent and SPOD modes. In this section, we examine the optimal parameters
associated with the eddy-viscosity fields to investigate how the eddy viscosity improved
the alignment and to identify potential universalities in modelling coefficients.

5.1. Structure of the eddy-viscosity fields
For the constant eddy-viscosity, RANS-based and mean-flow consistent eddy-viscosity
fields, the optimization is over a single value, and we plot the optimal values as a function
of frequency (still for m = 0) in figure 8(a,c,d) and the maximum value of the optimal
field in 8(b). We investigated several other metrics for the optimal field and each metric
provided similar trends and therefore, we chose �µT��, as it gave the most intuitive
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Figure 7. Real component of the response pressure fluctuations for St = 0.6 and St = 1 in the left and right
columns, respectively. Rows present the equivalent methods as described in figure 6.

10–1
(a) (b) (c) (d ) RANS cMean cOpt. ||µT ||�ReT,Opt.
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Figure 8. The optimal parameters across St � [0.05, 1] for (a) the optimal constant field 1/ReT , (b) optimal
eddy-viscosity field model, (c) the mean-flow consistent model and (d) the optimal RANS model. The optimal
eddy-viscosity field parameter shown is the maximum value of the field at each frequency, �µT��, while the
latter two models present the optimal coefficient c. The associated alignments for each model/parameter are
shown in figure 4.

comparison against the other scalar quantities. For all models, the frequency dependence
of the values is similar, with three regions of interest: St � [0.05, 0.3], St =� [0.3, 0.8]
and St � [0.8, 1].

In the low-frequency region, the baseline jet response comprises of spatially extensive
Orr-type modes that have a strong Reynolds number dependence, requiring a relatively
larger eddy viscosity to damp them. For St = 0.05 the ratio of the optimal effective
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Figure 9. Comparisons of the optimal eddy-viscosity fields (i.e. full-field optimal, mean-flow consistent and
RANS) and the associated dominant resolvent mode found via the optimization for St = 0.2 and 0.6. Contours
for all six eddy-viscosity fields are set from 0 to 3 × 10�3.

Reynolds number to the molecular Reynolds number is µT/μj � 13 500, a four orders
of magnitude difference when compared to the molecular viscosity.

In the moderate-frequency regime, where the baseline spectrum transitions from the
broadband, viscous Orr mechanism to the low-rank, inviscid KH mechanism, eddy
viscosity becomes less important, and we expect (confirming below, in § 7.1) insensitivity
to the overall value based on the relatively favourable alignment achieved in the baseline
case. As frequency increases, the responses transition back to a mix of KH and Orr-type
waves, with a progression towards broadband, viscous Orr modes at higher frequency.

At these higher frequencies, we see that the low-frequency dependence on inverse
effective Reynolds number resumes, similar to low the frequencies. Interestingly, this trend
shows that at higher frequencies ReT 
 Rej such that the effect of eddy viscosity ‘turns
off’ as frequency increases and the associated wavepacket wavelength becomes small (i.e.
approaching finer-scale turbulence), as expected on physical grounds.

Similar trends are observed for the mean-flow consistent and RANS eddy-viscosity
coefficients. For both eddy-viscosity fields, c is less than unity and only varies from 0.7 to
0.1 with a few exceptions. These values suggest that the optimal eddy-viscosity model is
a fraction of the total RANS or mean-flow consistent eddy-viscosity models that integrate
all perturbations.

For the full-field eddy-viscosity optimization, we stress that its primary purpose
is to determine what may be an upper bound for how well any eddy-viscosity
model could perform. Given that the alignments between the resolvent and SPOD
modes were not significantly higher for the optimized scheme than for the modelled
eddy-viscosity approaches (with optimal parameters), the detailed eddy-viscosity fields
are of lesser importance. Still, some aspects of the physics, such as the spatial locations
where Reynolds stresses become important for each frequency, are apparent in the
optimized fields. Figure 9 presents the optimized fields for two selected Strouhal numbers,
comparing them to both the RANS and mean-flow consistent eddy-viscosity fields scaled
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Optimal eddy viscosity for resolvent-based models

by their optimal coefficient c at each frequency. In addition, the dominant resolvent mode,
computed with the displayed optimal eddy-viscosity field, is shown for comparison with
the eddy-viscosity fields. The contours for the eddy-viscosity fields are set from 0 to the
maximum value of the St = 0.6 optimal eddy-viscosity field.

Overall, both frequencies present optimal eddy-viscosity fields that are complex,
unsurprising given the ability of the optimization to choose any eddy-viscosity
field, constrained only by the structure of the equations and positivity. The optimal
eddy-viscosity fields pinpoint the locations where linear structures break down (i.e.
where nonlinearities/Reynolds stresses become important) and inform what features an
eddy-viscosity model must include. In both cases, the optimization removes viscosity
from the potential core (i.e. the interior region of the jet relative to the critical layer),
when compared to the initial guess, while increasing the turbulent viscosity just outside of
the critical layer. The increase in eddy-viscosity is most often observed just downstream
of the peak amplitude of the wavepacket, coinciding with each wavepacket’s decay
downstream.

Although not entirely clear from figure 9, these findings are reasonably consistent with
each of the modelled eddy-viscosity fields when restricting the view to the region where
the resolvent/SPOD mode has significant amplitude. We can see that both the RANS and
mean-flow consistent eddy-viscosity fields present similar features as the optimal field,
explaining the ability of each model to achieve nearly optimal results. We will show in the
following section how such features also explain the ability of the RANS and mean-flow
consistent models to predict the subdominant modes, which require further turbulence
modelling downstream.

6. Alignment of subdominant modes

Although the optimization presented only aligns the dominant SPOD and resolvent modes,
subdominant modes are also of interest, particularly as they are necessary to reconstruct
flow statistics in the near field and are relevant for modelling coherence decay associated
with the ‘jittering of wavepackets’ to produce sound (Cavalieri et al. 2011). In this section
we seek to answer two questions: whether alignment with only the dominant mode
substantially alters the alignment of the subdominant modes and the effect of expanding
the optimization to subdominant modes. We first assess the former case using the optimal
parameters for each method. We show the computed subdominant modes in figure 10 for
modes 2 and 3 for the St = 0.6, m = 0 frequency–wavenumber pair.

Comparing the second mode to the baseline case (ReT = 3 × 104), we find that all
EVRA models give significantly improved alignments, reaching �70 % for the RANS
and mean-flow consistent models. Both the RANS and mean-flow consistent models are
superior to the optimal eddy-viscosity field, which is only fitted to align the dominant
mode. The RANS and mean-field models are also superior for the third, fourth, and fifth
modes (the latter two not shown for brevity), but with an alignment that falls off with
increasing mode number.

To observe how well the optimization of the first SPOD mode models the forcing
statistics (i.e. diagonalizes the forcing CSD S� ), we compare projections of the first five
SPOD modes with the first five modes from each eddy-viscosity method (including a
2-mode optimization described next) in figure 11. The plots show that the EVRA models,
in particular the RANS and mean-flow consistent models, are superior at diagonalizing
the CSD when compared to the baseline case.

Although the optimal eddy-viscosity field, aligned only with the dominant SPOD
mode, shows improvements in the subdominant modes, we can extend the optimization
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Figure 10. Subdominant modes 2 and 3 at St = 0.6, m = 0 in the left and right columns respectively for
SPOD, baseline and all EVRA models.
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Figure 11. Projections of the first five SPOD modes into the first five resolvent modes computed for all
EVRA models at St = 0.6, m = 0, including the 2-mode optimization shown in figure 12.

to align an arbitrary number of subdominant modes and achieve alignment superior to any
eddy-viscosity model. However, convergence issues with increasing SPOD mode number
suggest that optimizing for many modes (e.g. n > 5) would have marginal returns. For this
study, we present only the optimization of both the first and second modes at St = 0.6,
m = 0 to show the generality of the optimization framework and the physical implications
of the associated eddy-viscosity field for the subdominant modes.

Figure 12 presents the aligned resolvent mode via the optimization and the associated
eddy-viscosity field for the first subdominant mode. By including the second SPOD
mode, the optimization can achieve an alignment of 77 %, superior to any of the other
eddy-viscosity models, without altering the alignment of the dominant mode, 96 %.
We also observe that the remaining subdominant modes also increase in their projections,
as shown in figure 11. This observation is likely linked to the difference in mechanisms of
the dominant and subdominant modes at St = 0.6, m = 0. The dominant mode is KH-type,
while the subdominant modes are of Orr type. By aligning just the first Orr-type mode, we
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Optimal eddy viscosity for resolvent-based models

5 10 150 5 10 15
0
1
2

x/D x/D

r/D
|�2

�Wu2| = 0.77 Opt. µT,1,2

Figure 12. The second subdominant mode at St = 0.6 and the associated eddy-viscosity field that provides
the optimal alignment for both modes. The contour for the eddy-viscosity field is set to the same value as those
shown in figure 9 from 0 to 3 × 10�3.

observe improved alignments for the entire family of Orr modes, conversely, alignment of
only the KH mode does not substantially improve Orr modes.

The increase in alignment results from additional eddy viscosity located downstream
of the 1-mode, KH-type field, µT,1, shown in figure 9. The second mode imposes a
need for further eddy viscosity acting further downstream and towards the centreline, as
representative of the Orr mechanism at m = 0 for turbulent jets (Pickering et al. 2020a).
We find that this additional downstream eddy viscosity, present in both the RANS
and mean-flow consistent models, is responsible for the increased subdominant mode
alignment. Considering the simpler RANS (and mean-flow) model also shows similar
downstream structure, we investigate its merit for a predictive model in the next section.

7. Towards a predictive EVRA model for turbulent jets

Through the previous sections, we have shown that both the RANS and mean-flow
consistent eddy-viscosity models perform well across Strouhal numbers from 0.05 to
1 at m = 0, provided the overall constant associated with their application to the
disturbance fields is optimal (at each frequency and azimuthal mode number). In this
section, we consider the sensitivity of the results regarding the choice of a frequency
(and wavenumber) independent constant, and show that over a range of frequencies and
azimuthal mode numbers, alignments are relatively insensitive to the choice of a constant,
such that a single, universal value may be acceptable. While both RANS and mean-flow
consistent models both performed well with optimal coefficients, we focus only on the
RANS k � ε model, as it is better regarded as universal across a range of flows. We
then apply EVRA-RANS to the Mj = 0.4 jet using a single constant to six azimuthal
wavenumbers, m = 0 � 5, and find substantially improved predictions when compared
to the baseline. We also find similar observations when using the same EVRA–RANS
model for both the transonic and supersonic jets. Finally, we present the effect of the eddy
viscosity on the resolvent spectra.

7.1. Frequency and azimuthal mode sensitivity
The optimal RANS coefficients (figure 8) ranged from c = 0.7 � 0.004, with a relatively
constant region, c = 0.5, for moderate frequencies and, considering the fully optimized
eddy-viscosity field produced only marginally improved alignments for most cases, the
results may not be sensitive to the precise constant. We test this hypothesis for the RANS
model across a range of frequencies with proposed ‘universal’ values of constant c =
[1, 0.5, 0.32, 0.2, 0.08]. We plot the resulting alignments vs frequency in figure 13. With
little compromise, compared to the optimal constant for each frequency, a single constant
of c = 0.2 provides significant alignment across all frequencies up to St = 1. Although not
shown for brevity, we found similar observations using c = 0.08 � 1 for all three Mach
numbers and six azimuthal wavenumbers. In these cases, not only did c = 0.2 give the
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Figure 13. Alignments across all Strouhal numbers for the RANS eddy-viscosity model coefficients compared
with the optimal RANS coefficient at each frequency. The RANS coefficients are c = [1, 0.5, 0.32, 0.2, 0.08].
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Figure 14. Alignments for frequencies, St � [0.05, 1], and azimuthal wavenumbers, m = 0 � 5, for the (a)
RANS eddy-viscosity model using c = 0.2 and the (b) baseline, constant eddy-viscosity case (i.e. ReT = 3 ×
104).

best overall alignment, but the alignments were comparably insensitive to the value of c
chosen over this range.

We do not present a rigorous justification for the value of c = 0.2, however, c may
have a connection with LES eddy-viscosity modelling. If we compare the empirical
coefficients used in this RANS eddy-viscosity analysis, cCμ, to the square of the
Smagorinsky coefficient, C2

s , used for SGS eddy-viscosity fields in LES (Smagorinsky
1963), we can find that the value of c = 0.2 lies within the bounds of wall-bounded
and isotropic turbulence. Setting equal the products of each set of coefficients, we
find c = C2

s /Cμ. Then using the Mj = 0.4 RANS coefficient, Cμ = 0.073, and the
commonly used range of Cs, 0.1 for wall-bounded flows and 0.18 for isotropic turbulence
(Zhiyin 2015), we find that c = [0.14–0.45] (ranges for the Mj = 0.9, 1.5 jet are
c = [0.15–0.48], [0.17–0.57], respectively). This range approximately corresponds to the
acceptable values found in figure 13.

For non-zero azimuthal modes, figure 14 presents the alignment of the EVRA–RANS
model with SPOD using c = 0.2 and the baseline case for m = 0–5. The EVRA–RANS
model substantially increases the alignments for all non-zero wavenumbers. The results for
m = 1 are particularly encouraging, with a uniform, 80% alignment across all frequencies.
Azimuthal modes greater than 1 result in poorer alignment, albeit much improved
compared to the baseline case, especially when m > 2.
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Optimal eddy viscosity for resolvent-based models
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Figure 15. Alignments using the RANS eddy-viscosity model with coefficient c = 0.2 across Strouhal
numbers St � [0.05, 1] and azimuthal wavenumbers m = 0 � 5 for the (a) Mj = 0.9 and (b) 1.5 jets.

Expanding to non-zero azimuthal wavenumbers, the eddy-viscosity field also affects
a third mechanism observed in the global SPOD spectrum (as St 
 0), the lift-up
mechanism (Pickering et al. 2020a). Similar to the Orr mechanism, the lift-up mechanism
arises from triadic nonlinear interactions in the flow (Hamilton, Kim & Waleffe 1995;
Sharma & McKeon 2013; de Giovanetti, Sung & Hwang 2017; Cho, Hwang & Choi 2018),
identifying it as a likely benefactor to an EVRA approach. Figure 14 supports this claim,
showing significant improvements at low frequencies for non-zero wavenumbers. These
observations also agree with Pickering et al. (2020a), who showed that resolvent modes
related to streaks required an eddy-viscosity model (using the turbulent kinetic energy
model reported by Pickering et al. (2019) with c = 0.0065). They also observed that, in
turbulent jets, the spatial extent of resolvent modes increase as frequency decreases and
that without an eddy-viscosity, modes extend indefinitely downstream for St = 0. This is
analogous to theory surrounding streaks where the lift-up mechanism presents a rapid
spatial growth of streamwise streaks until viscous dissipation becomes dominant and the
structures decay (Hultgren & Gustavsson 1981). Considering the significant improvements
between alignments for low frequency and non-zero wavenumbers, we find the lift-up
mechanism to also be sensitive to an eddy-viscosity model.

7.2. Transonic and supersonic turbulent jets
We now generalize the RANS–EVRA model performance for both Mj = 0.9 and 1.5
turbulent jets using c = 0.2. Figure 15 provides the alignments across frequencies and
azimuthal wavenumbers for each. The transonic jet gives substantial agreement for m = 0
and m = 1 at approximately 80 % for much of the frequency range, while m = 2 gives
alignments of 60 %, on average. For the supersonic jet, the agreement is not as favourable,
however, much improved from the ReT = 3 × 104 alignments (not shown here for brevity).

The RANS eddy-viscosity model increases many of the alignments, however, poor
alignments remain, and these alignments appear to correspond to SPOD spectra without
large energy separation. As shown earlier in figure 4, EVRA and SPOD modes aligned best
when there exists large eigenvalue separation between the first and second SPOD mode.
We find similar behaviour here for all cases. Figure 16 presents the SPOD spectra of the
first five modes across all six azimuthal wavenumbers and three turbulent jets, with their
associated 95 % confidence intervals in light blue. A handful of the spectra show a clear
separation between mode energies, such as those between the first and second mode for
Mj = 0.4, m = 0 and 1, for Mj = 0.9, m = 0 and 1 (and higher frequencies for m = 2 � 5)
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Figure 16. Spectra, and their associated 95 % confidence intervals in light blue, of the first five SPOD modes
for azimuthal wavenumbers m = 0 � 5 from left to right and the subsonic, transonic and supersonic jets from
top to bottom, respectively. (a) Mj = 0.4, (b) Mj = 0.9 and (c) Mj = 1.5.

and for Mj = 1.5, m = 1. In each case where there is large eigenvalue separation, we find,
from figures 14 and 15, significantly greater agreement in projection coefficients between
the resolvent and SPOD modes, while finding poor projections for cases without clear
separation in eigenvalues. We also observe this for the subdominant modes investigated in
the Mj = 0.4, m = 0 case in § 6.

These observations point to a limitation to our method when comparing EVRA modes
with SPOD modes. For the SPOD modes without clear eigenvalue separation, the
eigenvalues themselves fall within the uncertainty bands (i.e. 95 % confidence interval)
of the other modes. The eigenvectors corresponding to these eigenvalues are expected to
have, at best, similar uncertainty levels. Thus, without more data, it is not possible to
attribute the lack of agreement to a failure of the EVRA ansatz.

7.3. Singular values
We return to the m = 0, St � [0.05, 1] case to assess the EVRA–RANS c = 0.2 model’s
effect on the singular values and compare them to the baseline case and the SPOD
eigenvalues. Figure 17 provides the spectra of the first five modes for SPOD (accompanied
by a shaded region providing the 95 % confidence interval of the eigenvalues), the baseline
resolvent model and the RANS–EVRA model (using c = 0.2) for m = 0. Comparing the
resolvent spectra to the SPOD spectra, we immediately see that the separation between
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Optimal eddy viscosity for resolvent-based models
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Figure 17. Spectra of first five (a) SPOD, (b) baseline resolvent and (c) the RANS eddy-viscosity model
resolvent modes at m = 0 for St � [0.05, 1].

� (i.e. the ratio between �n/�n+1) and σ 2 of either resolvent models does not compare
favourably. In fact, the RANS–EVRA spectrum has increased its energetic separation
when compared to the baseline case.

This behaviour may be linked to multiple (in this case two for m = 0) distinct
mechanisms represented in the flow, the KH and Orr mechanisms. As detailed earlier,
the inclusion of an eddy-viscosity model presents a substantial effect on the Orr
modes significantly reducing the streamwise extent of each mode, while the KH modes
are relatively unchanged. We observe an analogous effect here in figure 17 where
the singular values related to the Orr mechanism decrease substantially, pulling away
from the unaffected singular values of the KH mechanism, resulting in a much larger
separation between singular values than is observed between the SPOD eigenvalues.
This sensitivity of Orr modes to an eddy viscosity was also observed in Schmidt et al.
(2018) at St = 0.6, m = 0 when adjusting ReT , finding that the squared singular values
of the subdominant Orr modes scaled as Re1.2

T . We observe the same effect using the
RANS eddy-viscosity model, interestingly (and perhaps unsurprising given the preceding
discussions), figure 17 (c) provides similar values as those reported by Schmidt et al. (2018)
at St = 0.6, m = 0 when using ReT = 103.

Figures 17(a) and 17(c) also show that the forcing amplitudes, �β , are not uniform
in turbulent jets, contrary to a customary assumption used in resolvent analysis where
�� = αI , with α as an arbitrary constant (Lesshafft et al. 2019; Morra et al. 2019; Hwang
& Eckhardt 2020). Focusing on only the first and second resolvent and SPOD modes
for St = 0.6 and m = 0, where mode alignments are 95 % and 69 %, respectively (the
optimal-field case increases the latter value to 77 % without appreciably changing the
singular value), we may assume that the diagonal components of the forcing, ��,1 and
��,2, account for nearly all the energetic contributions by these two modes. As shown
by (2.17), this assumption allows for a one-to-one comparison between the first two
SPOD eigenvalues, resolvent singular values and forcing amplitudes (i.e. ��,n = �nσ�2

n
for n = 1, 2). If the customary assumption of uniform forcing is applied, �� = αI , then
α = �1σ�2

1 = �2σ�2
2 or, alternatively, �1/�2 = σ 2

1 /σ 2
2 , and figure 17 shows this cannot be

true. Therefore, unless the SPOD and resolvent spectra are equivalent, we must model or
estimate the non-trivial forcing amplitudes.

The sizeable difference between the singular values reflects the forcing of different
mechanisms at significantly different amplitudes in the flow. Pickering et al. (2020a)
showed that there are three distinct spatial regions that lead to the most efficient
amplification of the KH, Orr, and the lift-up mechanisms. They found that regions
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E. Pickering and others

localized near the nozzle where perturbations are smaller, associate with KH-type
responses, while regions downstream and near the end of the potential core where
perturbations are significantly larger, support Orr-type responses. Considering these
observations, a logical next step in completing a resolvent-based turbulence model is to
tie the forcing amplitude of different modes to the turbulence intensities in the respective
regions that force them.

8. Conclusions

We developed a data-informed optimization that quantitatively tested the extent to
which an eddy-viscosity model improves the alignment (i.e. agreement) between
observed large-scale structures, educed via SPOD, and those computed from resolvent
analysis. This eddy-viscosity approach acts as a proxy for modelling the effect of
turbulence on large-scale structures, and we found this approach provides substantial
improvements in agreement (i.e. when compared to a baseline case that used a constant
eddy-viscosity model corresponding to a value of ReT = 3 × 104). By directly optimizing
the eddy-viscosity field to achieve the best alignment, we found alignments between
resolvent and SPOD modes as high as 96 % or improvements of over tenfold from the
baseline alignment (i.e. 8 % to 80 %).

Across the frequencies and wavenumbers considered, the addition of an eddy-viscosity
model to the resolvent operator highlighted its effect on the different amplifications
mechanisms in the turbulent jet: Orr type, KH type and lift-up. Although eddy-viscosity
models improved modes related to the KH-type mode, we found KH modes to be
rather insensitive to the eddy-viscosity field, a result expected from the inviscid nature
of the inflectional KH instability. For resolvent modes associated with the Orr and
lift-up mechanisms, known to arise from nonlinear interactions, we found significant
sensitivity. Resolvent modes computed without a sufficient eddy-viscosity model were
visually unrecognizable from their SPOD counterpart, while those computed with an
eddy-viscosity model aligned to nearly 80 %.

The optimal eddy-viscosity field also provided an upper bound for mode agreement,
providing a benchmark to assess three additional eddy-viscosity models. Of these models,
we found that traditional eddy-viscosity models (e.g. RANS based) perform nearly as
well as the optimal eddy-viscosity models in aligning the most energetic mode. The
traditional models even outperformed the optimal model (i.e. optimal in the first mode)
when considering the subdominant modes, giving the greatest diagonalization of the
forcing CSD at m = 0, St = 0.6 (i.e. ability to model the effect of nonlinear forcing),
leading to a more efficient resolvent basis for describing turbulent jets.

Finally, we tested the modelling potential of a RANS-inferred EVRA through a
sensitivity analysis and observed its performance over frequency, azimuthal wavenumber
and Mach number. We found the sensitivity of the RANS-based EVRA model’s calibration
constant, c, to be weak, giving similar agreement for coefficients ranging over an order of
magnitude. We found that the coefficients resulting in similar agreement fell within a range
of values that may have a connection to the Smagorinsky coefficient for sub-grid-scale
modelling of eddy viscosity in LES. Choosing a frequency-independent RANS–EVRA
model (i.e. c = 0.2), we tested its performance across six azimuthal frequencies and three
turbulent jets, spanning subsonic, transonic and supersonic regimes. For the first three
azimuthal wavenumbers (i.e. m = 0 � 2), we observed substantially increased alignments
for all three turbulent jets and across Strouhal numbers St � [0.05, 1]. Overall, these results
show that ‘classical’ eddy-viscosity models (RANS or a mean-flow consistent model) aid
in estimating the impact of the Reynolds stresses for resolvent analysis.
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Figure 18. Optimal alignments for the linear damping term and the baseline case, ReT = 3 × 104.

While the present data-driven analysis points to the efficacy of relatively simple
eddy-viscosity-based models for modelling the effect of nonlinear forcing and providing a
more efficient resolvent basis, there remains a need for refinements to this approach and
careful comparison and consideration of alternative formulations.
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Appendix A. Linear damping term

Besides the studied eddy-viscosity models, we also investigated the impact of a linear
damping term, which is equivalent to a finite-time-horizon resolvent analysis introduced by
Jovanović (2004), recently studied by Yeh & Taira (2019) to localize the resolvent forcing
and response modes on an airfoil. For this model, we modify the operator so that,

Lβ = L � βI, (A1)

where β = 1/τ > 0, and τ is the desired temporal decay rate. We then find the value of β

that best matches the dominant resolvent and SPOD modes.
Figure 18 presents the agreements/alignments for the linear damping case. Although

linear damping improves alignments, the performance is significantly inferior to
the eddy-viscosity models, likely because of its monolithic damping effect over
all wavenumbers, whereas the eddy-viscosity methods directly address the effect of
the Reynolds stresses. Considering its suboptimal performance when compared to
eddy-viscosity models, we only present results for the Mj = 0.4, m = 0, and St � [0.05, 1]
cases.
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Appendix B. Governing equations

Conservation of mass, momentum and energy for a compressible, Newtonian fluid are
written as,

Dρ

Dt
= �ρΘ, (B1)

ρ
Du
Dt

= �
1

γ M2
j
�(ρT) + � •

�
μ

�
(�u) + (�u)T �

2
3

ΘI
��

, (B2)

ρ
DT
Dt

= �
1

γ M2
j

ρTΘ +
μ

(γ � 1)M2
j Pr�

�2T

+ γ M2
j μ

�
1
2



(�u) + (�u)T�

: {(�u) + (�u)T} �
2
3

Θ2
�

, (B3)

respectively, where Θ = � • u is the dilatation. We take Pr� = 0.7 and γ = 1.4 as
constants. The equations have been made non-dimensional with the jet density (ρj), speed
(Uj) , and diameter, D. The non-dimensional viscosity, μ = 1/Rej, is also a constant.

Applying the Reynolds decomposition (i.e. q(x, t) = flq(x) + q�(x, t)) to the above
equations and separating terms that are linear and nonlinear in the fluctuations to the left-
and right-hand sides, respectively, gives

flDρ�

Dt
+ u� • � flρ + ρ� flΘ + flρΘ � = fρ, (B4)

flρ
flDu�

Dt
+ flρu� • � flu + ρ� flu • � flu +

1
γ M2

j
( flρ�T � + ρ�� flT + flT�ρ� + T �� flρ)

� � •
�
μ

�
(�u�) + (�u�)T �

2
3

Θ �I
��

= f u, (B5)

flρ
flDT �

Dt
flρu� • � flT +

1
γ M2

j
( flTΘ � + T � flΘ) + ρ�{ flu • � flT +

flρ
γ M2

j

flT flΘ} �
μ

(γ � 1)M2
j Pr�

�2T �

� γ M2
j μ

�
{(� flu) + (� flu)T} : {(�u�) + (�u�)T} �

4
3

flΘΘ �
�

= fT , (B6)

with flD/Dt = ∂/∂t + flu • �, and where we have grouped all the nonlinear terms as forcing
terms on the right-hand sides.

The left-hand side is then transformed to a cylindrical coordinate frame and Fourier
transformed in time (ω) and azimuth (m). The resulting equations are discretized as
discussed in § 2.

The eddy-viscosity model we use, discussed in § 2, simply replaces μ in (B4)–(B6) with
μ + μT(x, r).

Appendix C. Optimizing in an input and output framework

In resolvent analysis, it is often useful to restrict the input and output spaces by writing

LTq = Bf , (C1)

y = Cq, (C2)

y = CL�1
T Bf , (C3)
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where C transforms the state vector to a desired output space y and B maps a smaller
dimensional input space to the state space. Here we show that such additions do not hinder
the generality of the optimization presented in this manuscript.

The structure of the cost function does not change,

J = u�
1Wy�1�

�
1Wyu1 � l2µ�

TMµT + c.c., (C4)

but the SPOD modes, � , and the resolvent modes, u, are now computed considering the
observable y, and the appropriate norms for the input and output space are defined by
including weighting matrices Wy andW f , respectively. The Lagrangian functional also
takes a similar form as § 3.1,

L = u�
1Wy�1�

�
1Wyu1 � l2µ�

TMµT � �u�
1

�
u1 � CL�1

T Bv1

�

� �v�
1

�
B�L��

T C�Wyu1 � σ 2
1 Wf v1

�
� �σ1

�
u�

1Wyu1 � 1
�
+ c.c., (C5)

where, �u1, �v1, �� 1 are the Lagrange multipliers. The effective composition of the functional
is identical to that of the full-state optimization as it is composed of the cost function, the
forward solution, the resolvent eigenvalue problem, and a normalization constraint. Taking
variations with respect to each variable, with exception to the eddy-viscosity term, results
in the following system of equations,

�

�
�

I Wy
�CL�1

T B Wyu1

B�L��
T C� σ 2

1 Wf
� 0

0 v�
1Wf 0

�

�
�

�

�
�u1
�v1
�σ1

�

� =

�

�
2Wy� 1Wyu1

0
0

�

� , (C6)

whose solution provides the Lagrange multipliers, �u1, �v1, �σ1.
A difficulty that arises in building (C6) is that the term L�1

T is a large, dense matrix.
When L, B, C and the weighting matrices are sparse, we may instead introduce auxiliary
variables through

LT ��1 = B �u1, (C7)

L�
T �	 1 = C� �v1, (C8)

whereupon (C6) may be written as a larger, but now sparse, system of equations

�

�����
�

L�
T 0 �C� 0 0

0 LT 0 �B 0
0 Wy

�C I 0 Wyu1

B� 0 0 σ 2
1 Wf

� 0
0 0 0 v�

1Wf 0

�

�����
�

�

���
�

�	 1
��1
�u1
�v1
�σ1

�

���
�

=

�

���
�

0
0

2Wy� 1Wyu1
0
0

�

���
�

. (C9)

The above presents a general optimization framework for aligning/matching any
input–output resolvent analysis to data (i.e. here we use SPOD modes, but � need not
be restricted to SPOD modes). Variations with respect to any parameter of the resolvent
operator may now be made to investigate their effect on modelling (or assimilating) known
quantities.
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