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Discovering and forecasting extreme events 
via active learning in neural operators

Ethan Pickering    1 , Stephen Guth1, George Em Karniadakis    2 & 
Themistoklis P. Sapsis    1 

Extreme events in society and nature, such as pandemic spikes, rogue waves 
or structural failures, can have catastrophic consequences. Characterizing 
extremes is difficult, as they occur rarely, arise from seemingly benign 
conditions, and belong to complex and often unknown infinite-dimensional 
systems. Such challenges render attempts at characterizing them moot. We 
address each of these difficulties by combining output-weighted training 
schemes in Bayesian experimental design (BED) with an ensemble of deep 
neural operators. This model-agnostic framework pairs a BED scheme that 
actively selects data for quantifying extreme events with an ensemble of deep 
neural operators that approximate infinite-dimensional nonlinear operators. 
We show that not only does this framework outperform Gaussian processes, 
but that (1) shallow ensembles of just two members perform best; (2) extremes 
are uncovered regardless of the state of the initial data (that is, with or without 
extremes); (3) our method eliminates ‘double-descent’ phenomena; (4) 
the use of batches of suboptimal acquisition samples compared to step-
by-step global optima does not hinder BED performance; and (5) Monte 
Carlo acquisition outperforms standard optimizers in high dimensions. 
Together, these conclusions form a scalable artificial intelligence (AI)-assisted 
experimental infrastructure that can efficiently infer and pinpoint critical 
situations across many domains, from physical to societal systems.

The grand challenge of predicting disasters remains an extremely 
difficult and unsolved problem1. Disasters, such as pandemic spikes, 
structural failures, wildfires or rogue waves (rare, giant waves that 
pose a danger to ships and offshore structures2,3), are uniquely chal-
lenging to quantify. This is because they are both rare and arise from 
an infinite set of physical conditions4. The proposition of predict-
ing extremes is analogous to finding a catastrophic needle in an 
infinite-dimensional haystack. This calls for methods that can both 
discover extreme events and encode physical phenomena into their 
modeling strategy. We present a Bayesian-inspired experimental 
design (BED) approach, described in detail in Fig. 1a, that addresses 
both challenges by combining a probabilistic ‘discovery’ algorithm5,6 
with a deep neural operator (DNO) designed to approximate physi-
cal systems7.

The discovery of extremes is often simplified by distilling complex 
systems to their governing input variables and relevant output vari-
ables. Within this interpretation, quantification of extremes has his-
torically taken the form of importance sampling, which uses a biasing 
distribution to identify regions of the input space that exhibit extreme 
values8,9. Unfortunately, these techniques often require additional 
and challenging considerations for accurate results10–12; they are also 
static, lacking an ability to adjust to new information gained through 
experiments. Active learning, specifically BED, provides a dynamic 
approach that learns from acquired data before selecting new and 
intriguing input–output data.

Active learning (AL) refers to a broad class of sequential sampling 
techniques for assembling efficient training datasets. AL has been 
applied with neural networks (NNs) in several fields, predominantly 
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approaches, such as GPs, which map parameterizations of physi-
cal phenomena, DNOs directly map physical, infinite-dimensional 
functions to physical, infinite-dimensional functions. This leads 
to drastic improvements in generalization to unseen data in high 
dimensions. Additionally, the NN backbone of DNOs mean they 
are intrinsically amenable to big data, unlike GPs, which scale as 
the third power of data size20,21. However, the utility of DNOs for 
Bayesian experimental design is an open question, as DNOs do not 
explicitly provide a measure of uncertainty. We propose and show 
the efficacy of using an ensemble of DNOs for uncertainty quantifi-
cation and BED. Although much of the literature is skeptical of the 
generality of ensembles to provide uncertainty estimates, recent 
viewpoints22, notably ref. 23, have argued that DNN ensembles pro-
vide a very good approximation of the posterior. Our results support  
this perspective.

Appropriately defined acquisition functions for uncovering 
extreme behavior are just as critical as the chosen surrogate model. 
Recently, Sapsis and Blanchard5,24, in concert with several other 

in classification tasks such as image recognition13, text recognition14 
or object detection15 (see ref. 16 for a survey of similar AL applications), 
with less attention in the literature focused on regression of physical 
processes, let alone rare events. Although there are some exceptions 
for AL in rare-event quantification, such as combining deep NNs (DNN)17 
or other surrogate models18 with weighted importance sampling for 
structural reliability analyses, neither leverage uncertainty to ensure 
the input space has been adequately explored. On the other hand, 
techniques employing BED and uncertainty predictions via Kriging 
or Gaussian process (GP) regression5,19 perform well, but cannot be 
applied to infinite-dimensional systems or scale to large-training sets. 
This necessitates a solution that can (1) accurately generalize to infinite-
dimensional systems and easily scale with data size, (2) emit uncertainty 
estimates and (3) apply appropriately defined acquisition functions 
for selecting extreme data.

DNOs, such as DeepONet7, are built specifically for handling 
infinite-dimensional systems and provide the ideal surrogate model 
for characterizing extremes. Unlike other machine learning (ML) 
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Fig. 1 | Active learning of extreme events in society and nature, from pandemic 
spikes to rogue waves, to structural ship failures. a, Efficient and robust 
DNO + BED framework for discovering and quantifying extremes. An overview of 
the proposed Bayesian experimental design framework with DNOs and rare-event 
acquisition functions for discovering extremes. Initialize with a set of observed 
physical input–output pairs, retained in their functional form. (i) Pass functions to 
an ensemble of DNOs to learn sparse representations of the underlying system. (ii) 
Perform a fast Monte Carlo search of the DNO functional space for extremes. (iii) 
Compute statistics over a Monte Carlo ensemble and select new input functions 
that both explore and exploit the space for extremes. (iv) Evaluate proposed 
inputs on the underlying experiment or simulation, record outputs (QoIs) and 
pass to (i). Repeat (i)–(iv) until statistics are converged or resources are depleted. 
End with an optimally trained DNO that supports prediction of extreme events. 
b–d, Inference of diverse extreme phenomena, from pandemic spikes to rogue 

ocean waves to large structural stress events on ships. Our framework pinpoints 
the most dangerous (that is, probable and extreme) pandemic scenarios (b), 
via realizations of stochastic infection rates, discovers rogue waves (c), and 
efficiently estimates large structural stress events for reliable ship design (d). In a, 
the most dangerous pandemic scenarios are pinpointed by inferring the number 
of new infections at time T = 45 days for a plurality of time-varying infection rate 
hypotheses. See Fig. 2 for more details. In b, rogue waves are discovered and 
quantified for future prediction by uncovering the probable wave conditions that 
nonlinearly interact in time to emit rogue waves over three times their original 
size. We show one example of this phenomena here and refer to Fig. 4 for more 
details on discovering these waves. In c, the statistics of peak stress govern fatigue 
lifetimes; with our approach we can efficiently estimate how unique ship designs 
structurally react to stochastic ocean waves to inform reliable and safe ship 
design. See Fig. 5 for the stress state related to this graphic.
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works6,25, introduced a class of probabilistic acquisition functions spe-
cifically designed for quantifying extreme events under asymptotically 
optimal conditions26. By combining the statistics of the input space 
along with statistics deduced from the surrogate model, the method 
can account for the importance of the output relative to the input. This 
approach substantially reduces the number of input samples required 
to characterize extreme phenomena.

The main contribution of this work is a scalable, model-agnostic, 
Bayesian-inspired DNO–BED framework with extreme acquisition func-
tions that efficiently learns to discover and forecast extreme events, Fig. 
1a. This AI-assisted framework comes with several favorable properties, 
such as improved data acquisition efficiency, computational tractabil-
ity, robustness and ease of implementation. The most important are 
summarized below:

 1. The DNO framework is consistently more efficient than GP ap-
proaches, especially as dimensionality increases.

 2. Shallow ensembles of just two members perform best, greatly 
reducing the training cost of ensemble DNOs.

 3. The use of batches of suboptimal acquisition samples com-
pared to step-by-step global optima does not hinder DNO–BED 
performance, permitting parallel experimentation in real-life 
applications.

 4. Extremes are uncovered, regardless of the state of the initial 
data (that is, with or without extremes).

 5. The method is observed to eliminate sample-wise ‘double-de-
scent’ phenomena.

Equipped with both extreme acquisition functions and an ensem-
ble of DNOs, our study demonstrates the above contributions 
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Fig. 2 | Nailing the tail, accurate PDF and danger score convergence in 50 
samples. a, From left to right, the full deterministic response of new infections, 
G(x), with respect to the two random parameters, x1 and x2, the probability 
distribution of the random parameters x1, x2, the underlying danger scores, w(x) 
(with two regions of danger, one probable and high magnitude (that is, extreme) 
and one that is probable with catastrophically high magnitudes, constituting a 
breakout event), and the log10 of the normalized (e0 = 107) log-PDF error (equation 
(1)), for the experiment performed in b using N = 2. The red circles indicate the 
iterations shown in b as well as additional results for a case with N = 8 ensembles. 
b, One experiment of the 2D stochastic SIR model using three initial samples 
and iterated 50 times. The rows represent iteration numbers 1, 5, 25 and 47 
from top to bottom, respectively. The columns, from left to right, are (1) the 

DNO approximation of the objective function, μ(x), given the training samples 
(initial + acquired), (2) the samples acquired (where initial samples are shown as 
white crosses and acquired samples as white dots) in the 2D parameter space and 
the predictive variance σ2(x), (3) the calculated danger scores w(x) and (4) the 
acquisition values a(x), with the next acquisition sample denoted by a red circle, 
and (5) the DNO approximated and true output PDFs. Iteration 47, first column, 
identifies a high-magnitude infection region ignored by the algorithm, due to 
low input probability. Animation links presenting 100 iterations are provided 
for N = 2 (https://github.com/ethan-pickering/dnosearch_nature_cs_data/
blob/main/movies/movieN2_Seed3.avi) and N = 8 (https://github.com/ethan-
pickering/dnosearch_nature_cs_data/blob/main/movies/movieN8_Seed3.avi).
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by testing three classes of representative high-dimensional sto-
chastic nonlinear system to discover extreme rogue waves, pin-
point dangerous pandemic scenarios, and efficiently estimate 
structural stresses to inform ship design (Fig. 1b–d).

Results
Our goal is to accurately quantify the probability distribution function 
(PDF), py(y), of a stochastic quantity of interest (QoI), y. The variable y results 
from an observed random variable input, x, that is transformed by the 
underlying system or map, y = G(x). Although the statistics of y can be found 
through Monte Carlo sampling of the system, doing so is extremely inef-
ficient. Instead, we aim to estimate an approximate map, G̃, via a surrogate 
model (for example, DNO or GP regression) trained on n observed data 
pairs 𝒟𝒟 = 𝒟xi, yi}

n
i=1. The generated surrogate model may then be sampled 

over x at a substantially greater efficiency than the original system respon-
sible for the observed (training) data, 𝒟𝒟. Using the Bayesian surrogate 
model approach, we estimate the mean model, μ(x), by considering the 
mean over an N-ensemble of trained DNOs (each initialized using random 
weights). Note that, for the case of GPs, this mean can be calculated in closed 
form using standard expressions from GP regression.

Having the estimated mean model for the QoI, μ(x) and the PDF 
of random input x, px(x), we can estimate the PDF for the QoI, pμ(y), 
via a weighted kernel density estimator (KDE). This is done by comput-
ing a large number of samples distributed over the input space with 
latin hypercube sampling (LHS), xj, evaluating them with the surrogate 
map, ỹj = μ(xj), determining their probability of occurrence, αj = px(xj), 
and estimating the PDF, pμ(y) = KDE(data = ỹj, weights = αj), using 
standard Gaussian KDE implementations. To emphasize the role of 
rare and extreme events, we assess the surrogate approximation by 
the error metric

where the integral is computed over a finite domain for the QoI, 
extended over the values we are interested in describing statistically.

Approximating the underlying map with a surrogate model may 
require substantial data depending on the complexity and dimension 
of the input space. To reduce the amount of necessary training data, 
we combine rare event statistics and Bayesian experimental design 
approaches to uncover the most critical data for training the surrogate 
model with surrogate map, G̃, that ultimately produces an accurate 
PDF, including the tails, of the QoI, y.

Figure 1b–d presents the key implications of our results, diagnos-
ing the most dangerous future pandemic scenarios (Fig. 1b; realizations 
of stochastic infection rates), discovering seemingly benign waves 
that lead to dangerous rogue waves (Fig. 1c), and identifying waves 
that lead to large structural stresses (Fig. 1d). In each case, different 
scenarios are tied to a ‘danger score’ or likelihood ratio, as proposed 
by Blanchard and Sapsis5:

w(x) = px(x)
pμ(μ(x))

. (2)

The likelihood ratio appropriately balances events that are probable 
and those that are extreme, so it provides a danger score for any given 
event. As denoted for the pandemic model in Fig. 1b, small danger scores 
are attributed to events that are either implausible or not extreme, 
whereas large danger scores relate to those that are both probable 
and extreme. However, any system’s danger score requires knowledge 
of the true PDF, py, which is generally unknown and must be learned. 
Our approach efficiently learns this underlying distribution through 
dynamic application of the danger score with Bayesian experimental 
design and DNOs.

Pinpointing dangerous pandemic scenarios
Figure 2a,b demonstrate how the proposed active learning framework 
leverages dynamically updating danger scores and predictive variances 
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e = ∫|log10pμ(y) − log10py(y)|dy, (1)
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to efficiently sample the underlying system and learn the PDF of infec-
tions for a stochastic pandemic model. The pandemic model is the 
simple ‘susceptible, infected, recovered’ (SIR) model, proposed by 
Kermack and McKendrick27 and popularized by Anderson and May28, 
with a two-dimensional stochastic infection rate (see Supplementary 
Section 1 for details). We assess success as the log-PDF error (equation 
(1); Fig. 2a, last column) between the true output distribution and the 
approximated distribution from the trained DNO (Fig. 2b, last column). 
See the section QoI and log-PDF error metrics for details on computing 
the log-PDF error metric.

Our framework quickly identifies the key regions of dynamical 
relevance and accurately recovers the important properties of the 
underlying system, despite an initialization of only three data samples 
in the parameter space. Using an ensemble of just two DNOs (Sup-
plementary sections 5 and 6 describe DNO implementation and the 
section Ensemble of neural networks for uncertainty quantification 
describes our application of ensemble methods), the algorithm itera-
tively provides an estimation of the underlying map (for computing 
pμ), predictive variance σ2(x) and a danger score w(x). Together, the 
danger score and predictive variance create the likelihood-weighted 
uncertainty sampling (US-LW) acquisition function, a(x) = w(x)σ2(x) 
(ref. 5), which identifies the sample within the parameter space with 
the greatest potential for learning the true output PDF. With the addi-
tion of each point, all fields dynamically change and bring the true and 
approximated output PDFs within greater agreement. By iteration 50, 
the danger scores have converged and the approximated output PDF 
has an error of less than 10−3. It is from this final danger score map that 
we derive the pandemic scenarios of Fig. 1b. This plot of danger scores 
includes two regions, one with probable and high-magnitude pandemic 
spike scenarios and another breakout scenario with catastrophic con-
sequences (an exceptionally high magnitude of infections). Each region 
is annotated in Fig. 2a, third column. Additionally, the last column of 
Fig. 2a shows that increasing the ensemble size to N = 8 provides little 
to no advantage.

The critical aspect of this approach is the algorithm’s reduction 
of a large parameter space to local regions of danger. Only regions 
that provide critical contributions to the output PDF are considered. 
Iteration 47 (last row, first column, in Fig. 2b) underscores this behav-
ior. The algorithm has accurately reconstructed the output PDF, but, 
by juxtaposing iteration 47 with Fig. 2a, we see that it has ignored a 
region where infections are of high magnitude located at x1 ≈ 1.5 and 
x2 = [−5, −6]. This region, as well as the remaining unexplored regions, 
provides negligible information about the QoI and is neglected by the 
acquisition function. This property is crucial for all systems where 
resources for experiments or simulation are limited or costly, and it 
permits a substantial reduction in training/acquired data as system 
complexity and dimensionality increases.

Discovering and predicting rogue waves
We now train a surrogate model for rogue-wave prediction by actively 
discovering the probable initial conditions (ICs), or precursors, respon-
sible for such phenomena. Here we present a proof of concept with 
a dispersive nonlinear wave model proposed by Majda, McLaughlin 
and Tabak (MMT)29,30 for one-dimensional (1D) wave turbulence. The 
same model has also been used as a prototype system to model rogue 
waves31–34 (Supplementary Section 2).

We seek to map initially observed waves, u(x, t = 0), where x is the 
spatial variable and t is time, to the QoI: the future spatial maximum 
G(x) = ||Re(u(x, t = T; x))||∞, where T is a prescribed prediction horizon. 
We note that MMT has complex solutions and therefore the ICs are also 
complex-valued. In a real application, other quantities, such as the short 
time derivative, would accompany the initial condition, instead of an 
imaginary component, to provide wave speed. We now investigate this 
complex and highly nonlinear problem by systematically scaling the 
dimensionality and expanding to larger datasets, where GPs begin to fail.

The DNO–BED framework, using the US-LW acquisition function 
(a(x) = w(x)σ2(x)), efficiently minimizes the error between the approxi-
mated and true PDF of the QoI when compared to GPs (as detailed in 
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Supplementary Section 4) or other common BED sampling strategies, 
such as US, a(x) = σ2(x), and LHS, as shown in Fig. 3a–c. This is high-
lighted by the dimensionality (that is, complexity) of the parameterized 
ICs increasing from 2D to 6D, where GPs begin to break down. Details 
on dimensionality are provided in Supplementary Section 2.

The DNO–BED framework using US-LW acquisition functions 
also brings favorable results for reducing computational cost in high 
dimensions, as both batching samples via parallel selection of multiple 
acquisition points (Fig. 3d) and the use of shallow ensembles of only 
N = 2 members (Fig. 3e) perform without loss. Computed at 8D, Fig. 3d 
shows that, regardless of choosing nb = 1, 5, 10 or even 25 samples per 
iteration, over 300 samples, does not result in a loss of performance 
with our framework. Furthermore, we describe in Supplementary 
Section 7 that the batched samples come from several regions of local 
optima and the use of Monte Carlo methods is substantially more 
efficient for identifying these acquisition samples than standard 
Python optimizers. See the section Experiment batching for details 
on batching implementation. These observations are a critical result 
for scaling our framework, as more complex systems inevitably will 
require more data.

Unexpectedly, not only do just two ensemble members, N = 2, 
perform well, they consistently outperform larger ensembles, N > 2, 
in Fig. 3e (where 100 iterations of batch size nb = 50 are applied to the 
8D case). This result appears to disagree with the natural hypothesis 
that a larger set of ensembles would provide uncertainty estimates with 
greater fidelity, leading to better performance of our sequential search 
methods. Clearly, the latter is not the case from our results, yet neither 
can it be that N = 2 ensembles provide a predictive variance of greater 
fidelity than N = 16. Figure 3f permits both concepts to be true. It shows 
that the greater the ensemble size, the smaller the variance between 
the error trajectories of independent experiments. This observation 
agrees with the idea that larger ensembles lead to a higher-fidelity 
predictive variance, but that greater fidelity leads to consistency rather 
than performance for this sequential search technique. We believe that 
using small N imposes a greedy search, in a similar fashion to Thompson 
sampling35. Regardless, the consistent observation that N = 2 is not only 
viable, but perhaps preferable, substantially minimizes computational 
costs for ensemble approaches.

Rogue-wave discovery in 20D. Equipped with the computational 
advantages of N = 2 ensemble members and large batch sizes (nb = 50), 
Fig. 4a,b shows that, even at 20D, our approach can recover the QoI 
PDF. The other acquisition functions not only perform poorly, but 
perform worse as more data are acquired. This observation appears to 
be related to the phenomenon known as sample-wise ‘double descent’, 

and many researchers have observed this behavior throughout ML 
procedures, from classification to regression problems36. Sample-wise 
double descent is associated with instabilities in the surrogate model, 
a product of overfitting. More data and greater complexity results in 
an over-parameterization of the provided data. Temporarily, this leads 
to inferior generalization until providing the surrogate model with 
sufficiently larger datasets.

The proposed acquisition function clearly avoids log-PDF error 
double descent for the 20D problem. Although we do not explicitly 
detail the mechanism behind this observation here, we refer to a 
parallel study by Pickering and Sapsis37 on this exact problem in 8D 
(showing elimination of both mean square error and log-PDF error 
double descent, as well as other examples using GP surrogate models) 
and briefly outline why the acquisition brings this beneficial behavior. 
As discussed in ref. 37, double descent is eliminated by only select-
ing data that critically contribute to the observed dynamics of the 
system. Unlike US-LW, the data chosen by LHS and US methods are 
not inherently important to recovering the true PDF and therefore 
induce misleading complexity in the underlying regression task. 
This observation further underscores the value of our acquisition 
function, as it systematically prevents overfitting and unwarranted 
model complexity.

Additionally, we find that, regardless of the origin of the initial 
samples—with extremes (chosen by LHS) or without extremes (from 
the prior, px)—the method achieves similar error metrics in Fig. 4a,b. 
To elucidate the physical meaning of these results, Fig. 4c,d presents 
the physical manifestations of the 20D initial conditions, that is, the 
real component of uinit(x, t = 0), for those that include extremes and 
those that do not, respectively. The horizontal lines denoting the mean 
and standard deviations (μ, σ) refer to the statistics of the normally 
distributed ICs, uinit(x, t = 0), not the QoI. Instead, the QoI is observed 
after evolving the presented ICs by T, and the associated QoI value is 
represented by the color of the line. Focusing on Fig. 4c (left), several 
of the initial LHS ICs are already extreme, as portions of the ICs already 
exceed 3 s.d. (the common delimiter of extremes for normal distribu-
tions). Meanwhile, Fig. 4d (left) gives IC samples from the prior, which 
are nearly bounded by 1 s.d. Despite these clearly different sets of initial 
ICs, the algorithm samples similar ICs in the right plots of Fig. 4c,d, and 
achieves similar error metrics in Fig. 4a,b. These ICs are approximately 
bounded within ±2σ, meaning they are neither extreme (yet) nor com-
mon, but sit on the periphery of a dynamical instability that may lead 
to an extreme event. Therefore, the method is able to uncover the 
seemingly benign conditions that lead to extremes, regardless of the 
initial training set. Finally, with respect to the IC statistics, observed 
QoIs above ~0.3 constitute an extreme event at t = T.
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Fig. 5 | Efficient learning of fatigue statistics for ship design. a, Median-
normalized (e0 = 5 × 108) log-PDF errors for ten experiments of VBM statistics for 
GP and DNO using LHS and US-LW, where the shaded regions denote 1 s.d. (that is, 
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extreme (red) loads on the ship from stochastic ocean waves. The black dot 
indicates the instantaneous VBM sustained by the ship in Fig. 1.
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Efficient estimation of structural fatigue for ship design
Uncovering the statistical signature of a marine vessel’s vertical bending 
moment (VBM) at the midship section is critical to estimating fatigue 
lifetimes. Caused by cyclic hydrostatic pressure forces and the slam-
ming of a ship’s bow into oncoming waves38–40, large VBMs increase 
the potential for microfracture nucleation and propagation41–43. Just 
as in our previous examples, these forces are stochastic processes 
that result in unique VBM statistics for each unique ship design (such 
as the Office of Naval Research topsides flare variant studied here) 
via an underlying nonlinear operator. Performing either tow-tank or 
numerical experiments is expensive and time-consuming, limiting the 
potential for optimal structural design. Here we apply our method to 
a proprietary code, LAMP (Large Amplitude Motion Program, v4.0.9, 
May 2019)44, to calculate the expensive forward problem of a specific 
VBM response to a specific wave episode for informing ship design.

Applying the framework to a 10D subspace of finite-time ocean-
wave episodes impacting the ship modeled in LAMP, we again find that 
the US-LW DNO is most efficient in learning the VBM (QoI) statistics 
when compared with the other methods shown in Fig. 5a. To highlight 
the relative ease of implementation of the DNO-based approach, we 
emphasize that the GPs were very carefully tuned (optimization of 
hyperparameters using additional simulations, which took a sub-
stantial amount of time and effort), in contrast to the minimal tuning 
efforts required for DNOs. Figure 5b also presents two representative 
realizations, one average and one extreme, of the VBM time series felt 
by the ship through a set of ocean waves. The highlighted point on the 
extreme realization at t = 27 represents the instantaneous VBM load 
that the ship encounters during an instant as presented earlier in this 
Article (Fig. 1d).

Discussion
Although we have only shown the ability of the DNO–BED framework 
to efficiently learn extreme statistics for three example problems, pro-
totype rogue waves, pandemic spikes and ship fatigue, this approach 
is general for learning any stochastic nonlinear system with extreme 
events. However, we caution readers that our results are empirical 
and do not come with robust guarantees. This is compounded by the 
non-analytical nature of NNs, which limit hope that guarantees may 
ever be found. Thus, implementation must be performed carefully and 
systematically. Training the DNOs is not trivial and requires finesse, 
while the acquisition function, although not observed here, could 
fall prey to unforeseen pathological cases. To help readers implement 
the method, Supplementary Section 8 provides several tips as well 
as general implementation concerns that we either experienced or 
recognized during implementation.

The framework also provides modularity for the chosen surrogate 
models and acquisition functions, as long as the parameter and func-
tion spaces are appropriately defined. Critically, we separate the two, 
as shown in Fig. 6. In GP implementations, the parameter space of a 
stochastic process is used for both regression and searching. Instead, 

our implementation of DNOs performs regression in the functional 
space, leveraging the typically disregarded basis functions associated 
with the parameterization, and the search algorithm is performed in 
the parameter space via a forward DNO coupling with the associated 
basis functions. It is this maintenance of the functional representation 
that provides improved generalization across the parameter space.

As such, any arbitrary neural architecture leveraging this distinc-
tion may be implemented, such as standard feedforward NNs, Fourier 
neural operators45, convolutional NNs, recurrent NNs, long-short term 
memory, among others. In fact, this work did not explicitly investigate 
the full value of DeepONet for operator learning for BED. Instead, only 
the standard feedforward branch NN was used. Using the complete 
operator machinery only requires adjusting the parameters related 
to the operator and trunk. Here, we kept these parameters constant. 
Finally, while we focus on Bayesian experimental design, slight adjust-
ments to the choice of acquisition function allow for Bayesian optimiza-
tion tasks46 or for approaching other metrics of interest (for example, 
mean squared error).

In conclusion, we believe we have demonstrated an equation-
agnostic framework that (1) efficiently discovers extreme events, (2) 
is computationally tractable and (3) can be implemented straightfor-
wardly on any stochastic input–output system. This creates a unique 
opportunity for experimentalists and computationalists alike to inves-
tigate and quantify their stochastic systems with respect to extreme 
behavior, whether that behavior originates from societal or physical 
systems or has beneficial or catastrophic consequences.

Methods
Our approach to Bayesian experimental design, detailed in Fig. 1a, 
consists of two critical components, data selection criteria and the 
surrogate model. Supplementary Algorithm 1 formalizes the iterative 
steps taken in Fig. 1a for efficiently training a surrogate model with 
minimal data selection.

Surrogate models
We test two surrogate models in the BED framework, GPs (as the bench-
mark case) and DNOs (specifically DeepONet) for greater scaling and 
generalization performance. Although both GPs and DNOs provide the 
same role in the framework, their implementation is fundamentally 
different (Fig. 6 provides a visual representation).

Whereas GPs are used to approximate the map of random param-
eter inputs, x ∈ ℝ1×D (D is the parameterization dimension), to a QoI, 
x ↦ G̃GP(x), we use DNOs to approximate the map of the parameterized 
input function, u = xΦ, to the QoI, u↦ G̃DNO(u). In the case of the MMT 
problem, the input function varies spatially over x as u(x) = xΦ(x), that 
is, the scalar product between x and Φ(x), where  is the 
parameterization basis over nx spatial points, to an output function 
G(u(x) = xΦ(x)). In both cases—GP and DNO—x is the only independent 
variable and is maintained to provide a means of searching for extremes 
in the parameter space. However, the proposed regression task for 
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DNOs ensures that they perform their mapping in functional, or physi-
cal, space, rather than the parameter space. This distinction is founda-
tional for our approach and success with DNOs for BED.

We provide details for GPs and DeepONet in Supplementary 4 
and 5, respectively, and only discuss our approach for quantifying the 
predictive variance, σ2(x), for DNOs using ensembles.

Ensemble of neural networks for uncertainty quantification. 
Although NN architectures are attractive for approximating nonlinear 
regression tasks, their complexity rids them of analytical expressions. 
This does not allow for a traditional Bayesian treatment of uncertainty 
in the underlying surrogate model—a key property present for GP 
regression. Knowledge of the uncertainty of a surrogate model allows 
one to target model deficiencies as seen in the parameter space. This 
means that choosing an appropriate method for quantifying the uncer-
tainty is a crucial and key component to active learning or BED. There 
are several techniques for quantifying uncertainty in NNs; we provide a 
brief description of these in Supplementary Section 5.1, focusing only 
on ensemble methods.

Ensemble approaches have been used extensively throughout 
the literature47,48 and, despite their improved results for identifying 
the underlying tasks at hand49, their utility for quantifying uncertainty 
in a model remains a topic of debate. There are several approaches 
for creating ensembles. These include random weight initialization48, 
different network architectures (including activation functions), data 
shuffling, data augmentation, bagging, bootstrapping and snapshot 
ensembles50–52, among others. Here we employ random weight initializa-
tion, a technique found to perform similarly or better than Bayesian NN 
approaches (Monte Carlo dropout and probablistic backpropagation) 
for evaluation accuracy and out-of-distribution detection for both clas-
sification and regression tasks48. As stated earlier, much of the field is 
skeptical of the generality of ensembles to provide rigorous uncertainty 
estimates. However, recent studies, such as that in ref. 22 and specifically 
ref. 23, have argued that DNN and DNO ensembles provide reasonable, if 
not better, approximations of the posterior. Finally, the straightforward 
implementation of the randomly initialized weights motivates our 
choice, as it makes the adoption of these techniques far more probable.

We train N randomly weight-initialized DNO models, each denoted 
as G̃n, that find the associated solution field y for functional inputs u 
and operator parameters z (that is, components that change the under-
lying operator, such as exponents or operator coefficients). This allows 
us to then determine the pointwise variance of the models as

σ2(u, z) = 1
(N − 1)

N
∑
n=1

(G̃n(u)(z) − G̃(u)(z))
2
, (3)

where G̃(u)(z) is the mean solution of the model ensemble. Finally, we 
must adjust the above representation to match the description for BED. 
In the case of traditional BED and GPs, the input parameters, x, represent 
the union of two sets of parameters, xu and xz. The parameters xu typically 
represent random variables applied to a set of functions that represent 
a decomposition of a random function u = xuΦ(x1, ..., xm), where x1, ..., xm 
are discrete function locations (spatial, temporal or both), and xz = z 
represents non-functional parameters of the operator. Thus, the DNO 
description for uncertainty quantification may be recast as

σ2(x) = σ (xu ∪ xz) =
1

(N−1)

N
∑
n=1

(G̃n (xuΦ (x1, ..., xm)) (xz) − G̃ (xuΦ (x1, ..., xm)) (xz))
2
.

(4)

Data selection and acquisition functions
The acquisition function is the key component of the sequential search 
algorithm, as it guides Supplementary Algorithm 1 in exploring the 

input/parameter space and determines samples at which the objec-
tive function is to be queried. Because of the lack of a closed analytical 
form of DNOs, we only consider two acquisition functions as used 
previously with GPs on several test cases in ref. 5. The two functions we 
are interested in are the commonly used US and the output-weighted 
US, proposed in ref. 5 and shown in ref. 26, to guarantee optimal conver-
gence in the context of GP regression. The difference here is that we 
apply them explicitly to DNOs (DeepONet) and present the advantages 
of DNOs compared to GPs as we apply them to a complex and high-
dimensional problem.

Uncertainty sampling. US is one of the most broadly used active 
sampling techniques and identifies the sample where the predictive 
variance is the greatest:

aUS(x) = σ2(x). (5)

US, also known as the active learning-MacKay (ALC) algorithm53, 
imposes a sequential search that evenly distributes uncertainty over 
the input space as it gains data. The popularity of US is due to three 
qualities: ease of implementation, inexpensive evaluation (for small 
datasets with GPs) and analytic gradients, the last of which permits 
the use of gradient-based optimizers.

Likelihood-weighted acquisition functions. There are several 
‘extreme event’ LW acquisition functions that could be explored, 
as proposed in ref. 6, but we elect to only test the US-LW acquisition 
because of its simplicity in implementation. For US-LW, we augment 
the US sampling acquisition function with the previously described 
danger scores to give

aUS−LW(x) = w(x)σ2(x), (6)

such that both highly uncertain and high-magnitude regions are 
sampled.

To compute w(x), we note that the approximated output PDF, pμ(μ) 
is approximated via a kernel density estimator with n = 106 test points 
(107 for the 20D example). For the DNO cases, we chose to compute this 
with only the first ensemble member, μ = G̃1, to reduce computational 
costs. Similar to the ensemble results for N = 2, using only one ensemble 
member is akin to using Thompson sampling35,54 and performs without 
reduction in performance.

QoI and log-PDF error metrics
To test the ability of the DNO and GP Bayesian-inspired sequential algo-
rithms to quantify extremes, we define a QoI, or ‘danger map’, for the 
pandemic scenarios and rogue waves. The rogue-wave QoI is defined as

G(x) = ||Re(u(x, t = T; x))||∞, (7)

where T = 20, and the pandemic QoI is

G(x) = I(t = T; x), (8)

where T = 45 days.
For each case, we then select 105 LHS test samples, X ∈ ℝd×105, evalu-

ate the true QoI at each, y = G(X) ∈ ℝ1×105, compute the probability of 
each sample, 𝛼𝛼 = px(X) ∈ ℝ1×105 and find the true PDF, pG(y) = KDE(data = 
y, weights = α), using standard Gaussian KDE implementations (for 
example, scipy.stats.gaussian_kde). The approximated PDF is then found 
by replacing the true map with the surrogate map at each iteration.

Although the 105 test points provide sufficient samples for 
accurate PDF assessment through a KDE at all cases 10D and less, 
the absolute truth PDF for the 20D example is much more difficult. 
To attain a definitively converged PDF would require >107 samples, a 
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computationally infeasible quantity. Therefore, we emphasize that 
our truth metric is based on how well the approximated 105 test points 
reconstruct the KDE PDF given the same true 105 test points, rather 
than a definitive converged truth. This means that as long as the true 
behavior and the surrogate model are the same on these 105 LHSs, 
then the PDFs generated are identical everywhere. Although this 
may seem like a simple task, our results only sample a maximum of 
5,000 training points (Fig. 4), two orders of magnitude less than the 
test set. At this size, only the DNOs with output-weighted sampling 
are unable to accurately regress to the test set. Therefore, this shows 
that the method is able to learn the underlying map at a substantially 
improved efficiency.

Finally, to determine whether the testing data appropriately identi-
fies extremes, we compute the log-PDF error:

e(n) = ∫ |log10pμn (y) − log10pG(y)|dy, (9)

where n is the iteration number.
For the LAMP problem, where the output measure (VBM) is a time 

series, the QoI and the error metric are slightly more complicated. The 
GP and DNO map x to q as

G(x) = q(x), (10)

and the VBM in time is recovered via

y(t; x) =
12
∑
i=1
qi(x)ϕqi (t), (11)

where ϕqi (t) are output basis vectors in time. We then concatenate 
realizations of y(t; x) to form a single, long time series Y(t). We drop 
explicit dependence of Y(t) on x, under ergodicity assumptions. Finally, 
our quantity of interest is the one-point time statistics of Y(t). The 
ground-truth PDF py(y), is computed using 3,000 Monte Carlo realiza-
tions, each over 1,800 time units, and the surrogate model approxima-
tion, pμn (y), uses 10,000 LHS realization of 40 time units. Both PDFs are 
computed using standard unweighted KDE, and the log-PDF error is 
computed as in equation (9).

Monte Carlo optimization of acquisition functions
In our experiments, we consistently observe that acquisition samples 
found through optimizers using gradient descent are not globally opti-
mal. Instead, Monte Carlo evaluation of the DNOs and GPs consistently 
find improved optima. This is chiefly because of the non-convexity of 
the acquisition function. We may recall the highly non-convex behavior 
of the 2D acquisition fields in Fig. 2b, even with as few as approximately 
five samples. This non-convex nature emits many local minima that 
require many initial search samples to provide confidence that the 
chosen optima are nearly global. As the optimizer progresses for each 
iteration, it must call the DNO or GP, whereas a Monte Carlo approach 
may efficiently evaluate all samples in one vector operation. This means 
that for the same computation time as the optimizers, Monte Carlo 
sampling may evaluate a substantially larger distribution of query 
samples and return acquisition samples with greater scores than that 
of the optimizer. In Supplementary Section 7 we show that acquisition 
scores found via Monte Carlo at 20D consistently outperform optimiz-
ers for similar computation times.

Although we choose to implement a Monte Carlo approach instead 
of off-the-shelf optimizers, there are probably several other optimiza-
tion approaches that would prove to perform better in finding optimal 
sets of acquisition points. However, our contribution is focused on 
defining and implementing the acquisition function in DNOs for select-
ing the next experiment, and we leave further optimization of the DNO 
acquisition space for future work.

Experiment batching
As systems become more complex, additional experiments/data are 
required to reduce errors for higher-dimensional cases, as observed in 
Fig. 3. Considering that many experiments can be conducted in parallel, 
we ask whether choosing multiple local minima of the acquisition func-
tion presents marginally reduced performance than a purely sequential 
search. This is especially critical for situations where experimental 
time is more costly than additional set-ups (for example, protein or 
genetic design).

The purpose of batching is to find multiple regions of local optima 
of the acquisition function, rather than finding several optima in the 
same region. To impose this idea, we create a constraint that no acqui-
sition sample may reside closer than a distance rmin to one another. 
We define rmin as a fraction of the maximum euclidean distance of the 
space being sampled:

rmin = rl(
D
∑
d=1

(xd, + − xd, −)
2)

2

, (12)

where xd, + and xd, − are the maximum and minimum domain bounds 
of each parameter dimension d and rl is the user-defined percentage. 
In this work we chose a static rl = 0.025, but dynamic values based on 
the packing of the parameter space would be an intriguing direction 
for increasing the efficacy of this approach. Imposing this constraint 
requires an iterative processing of the acquisition scores, as detailed 
in Supplementary Algorithm 2. For the batching applied in this Article, 
each case uses a Monte Carlo querying of nq = 106 points.

Data availability
All relevant data for reconstructing the results, including the LAMP 
dataset, are provided at dnosearch_nature_cs_data55. Additionally, all 
data, with exception of the LAMP data, may be computed from scratch 
using the code found in the dnosearch56 GitHub repository. Source data 
are provided with this paper.

Code availability
Code pertaining to the sequential discovery algorithm of the SIR, MMT 
and LAMP problems is publicly available from the GitHub repository 
dnosearch56. The DeepONet code framework can be found within the 
deepxde package on GitHub. Code pertaining to the Large Amplitude 
Motions Program (LAMP) v4.0.9 (May 2019) is a proprietary code 
developed by Leidos (formerly SAIC). Additional product informa-
tion about LAMP may be found by contacting Leidos at https://www.
leidos.com/contact.
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