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Abstract

We propose two bounded comparison metrics
that may be implemented to arbitrary dimension
in regression tasks. One quantifies the struc-
ture of uncertainty and the other quantifies the
distribution of uncertainty. The structure met-
ric assesses the similarity in shape and location
of uncertainty with the true error, while the dis-
tribution metric quantifies the supported magni-
tudes between the two. We apply these metrics
to Gaussian Processes (GPs), Ensemble Deep
Neural Nets (DNNs), and Ensemble Deep Neu-
ral Operators (DNOs) on high-dimensional and
nonlinear test cases. We find that comparing a
model’s uncertainty estimates with the model’s
squared error provides a compelling ground truth
assessment. We also observe that both DNNs and
DNOs, especially when compared to GPs, pro-
vide encouraging metric values in high dimen-
sions with either sparse or plentiful data.

1 Introduction

Deep neural networks (DNN/NN) have become increasing
popular as a surrogate model of choice. This is largely due
to their flexibility, propensity for large-data training, and
their predictive performance on unseen data. However, the
former property, flexibility, comes at a cost. DNNs lack
closed analytical forms, rigorous proofs, or unique solu-
tions. Most importantly, there exists no general approach
for quantifying the uncertainty (or uncertainty quantifica-
tion, UQ) for any DNN model. This leads to a hesitancy,
reluctance, or a general lack of trust one may have in
DNNs, particularly when safety- and mission-critical real
world applications are the subject of training and predic-
tion. Finding a general approach for uncertainty quantifi-
cation for DNNs will greatly remove such concerns and
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allow modelers to present new data to alleviate large model
uncertainties.

However, there are other, and perhaps more fundamen-
tal reasons for a lack of DNN uncertainty quantification.
What uncertainty quantification ground truth should a tech-
nique be compared to and through what measure should
we even compare uncertainty (Gawlikowski et al., 2021)?
Quite often, measures are empirical, qualitative, and low-
dimensional. For example, in 1-dimensional problems the
“eyeball” norm, or intuition, is commonly used to demon-
strate the potential of various methods (Lakshminarayanan
et al., 2016; Yao et al., 2019). This measure is clearly not
robust nor scalable to high dimensions, and biased by hu-
man perceptions of what is a superior uncertainty.

Our objective of this study is to propose a predictive-
variance and squared-error comparison metric that effi-
ciently quantifies the quality of uncertainty quantification
in arbitrarily large dimensions. We propose two scalar met-
rics for assessing the similarity between uncertainty fields
and their relationship to the true error. This requires decou-
pling the structure, where uncertainty and error lie in the
parameter space, and distribution of values, i.e. the mag-
nitudes, of uncertainty and error. The former replaces the
"eyeball" norm when visualization is impossible, while the
latter provides confidence that the magnitudes of predictive
variance are reasonable. These metrics allow for us to sys-
temically ask the question: For any given model, what is
the model’s “quality of uncertainty”?

This work is also motivated from a Bayesian Experimental
Design (BED) and Bayesian Optimization (BO) viewpoint,
where measures of the predictive variance are the key in-
gredient for informing the acquisition of new training data.
Thus, the metrics posed aim to answer whether the predic-
tive variances found through various modeling strategies
are sufficient for use in BED or BO. Here, we specifically
consider Gaussian process (GP) regression, deep neural
networks (DNNs/NNs) and deep neural operators (DN0s)
for this purpose. Although there is no “perfect” quantifi-
cation of uncertainty, uncertainty quantification found by
Gaussian Processes are universally trusted and often cited
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as the gold-standard and compose the backbone of BED
and BO. Despite this, we emphasize that GPs do not gener-
alize well to large-parameter spaces and high dimensions,
motivating our curiosity in the structure of uncertainty in
DNNs and DNOs.

2 Uncertainty Metrics

Several quality of uncertainty metrics exist in the lit-
erature, but often these metrics are misleading (Yao
et al., 2019). Examples include high test log likelihood
(LogLL), RMSE, prediction interval coverage probability
(PICP) (Pearce et al., 2018), and mean prediction interval
width (MPIW) (Su et al., 2018). For high LogLL, the goal
is find as much diversity as possible in regions that data has
yet to be observed. However, the metric does not possess
meaningful bounds and can range from -100 (bad model) to
2 (good model). This is useful for model selection, but not
for approximating the true posterior. RMSE only provides
performance and greater confidence in the model, not a true
uncertainty measure. Similarly, MPIW determines the av-
erage width of the 2.5% to 97.5% percentile interval with
the goal of minimizing MPIW. This metric directly com-
petes with the concept of model diversity and identifying
regions of model concern, especially for high-dimensional
problems.

Commonly used for ensemble methods, PICP provides a
more suitable measure for the structure/quality of uncer-
tainty. PICP directly measures the probability of test data
lying within the 2.5% to 97.5% percentile interval, where
the ideal value is 95%. Although PICP provides a probabil-
ity for capturing test data, it does not provide a measure of
how the models do so. PICP does not measure the relative
structure of the underlying uncertainty, nor does it weight
regions with intriguing uncertainty or test error. As we will
show, a large, constant, and “boring” predictive variance
over a high dimensional space consistently provide large
scores, despite providing limited information about the un-
derlying regression problem. The metrics we pose are not
fooled by uninteresting uncertainty quantification.

2.1 Structure Metric: R

The structure metric we implement is no more than the cor-
relation coefficient between the squared error and the pre-
dictive variance, but as we will show, it brings far more in-
formation than traditionally used metrics, such as PICP or
LogLL. Our reasoning for directly comparing squared error
and the predictive variance is motivated by BED and BO.
For cases where the purpose of uncertainty quantification is
to assist in providing models that perform well, in that they
generalize to unseen data with small error, we argue the
ideal metric be one that measures the ability of uncertainty
to identify generalization error. Specifically, our question
is whether a model strategy, equipped with a special set of

kernels or functions, accurately reflects its perceived errors
via its predictive variance. The correlation coefficient does
just that, it measures the degree to which the spatial struc-
ture of the error and the predictive variance are similar.

To compute the correlation metric, both the squared error,
ε2(θ), where θ is an n−dimensional random variable, and
σ2(θ) are evaluated at θtest points and represented as a 1-
dimensional vector. As is standard for calculating the cor-
relation, we center each vector by its mean and normalize
it to unity such that:

σ2Tσ2 = 1

ε2T ε2 = 1. (1)

We may then take the inner product of the two normalized
vectors to assess their similarity or agreement. Due to the
normalization the projection leads to the correlation coeffi-
cient, R, ranging from -1 to 1,

R = σ2T ε2. (2)

The correlation coefficient brings an unusual set of bounds.
A value of 1 indicates that the fields are identical to a scalar
multiple, 0 indicates no agreement, or orthogonality be-
tween the two methods, while -1 presents vectors that are
identically inverse. For comparing σ2 and ε2, all 0 and
negative values are effectively useless. Negative values
are extremely rare and problematic when observed, as we
are comparing positive valued fields anchored by identical
training datasets. However, the ability of the correlation
coefficient to significantly penalize inverse behavior be-
tween the variance and error is the attractive feature. This
is specifically what keeps this measure from being tricked
by large, constant, and boring predictive variances found
by GPs later. As a consequence of the penalization, values
should be interpreted as reporting that at least an R frac-
tion of the predictive variance regions/mass is in agreement
with the squared error.

These bounded values provide a clear and interpretable
metric that is defined only by the number of query points
in an arbitrarily large parameter space (i.e. θ) and is not
hampered by large dimensions.

2.2 Distribution Metric: NDIP

With structure considered, we are also interested in the sim-
ilarity of supported magnitudes of the predictive variance
and pose a metric for assessing the quality of the distribu-
tion of uncertainty. Although structure is critical for BED
or BO, an understanding of the amplitude of the predic-
tive variance is important for model confidence. In order
to define the distribution metric, we remove the notion of
structure and look solely at the distribution of predictive
variances and squared errors.



Again, we begin with a test vector of predictive variances
and squared errors, but instead of centering and normaliz-
ing, we fit the values, using a kernel density estimator, to
a model agnostic distribution pσ2(σ2). We then discretize
and normalize this distribution such that

pσ2
Tpσ2 = 1

pε2
Tpε2 = 1. (3)

Taking the inner product of this normalized distribution
gives the Normalized Distribution Inner Product (NDIP)

NDIP = pσ2
Tpε2 . (4)

Just as the correlation coefficient, a value of 1 presents two
identical distributions, while a value of 0 gives orthogonal-
ity (as all value are positive for probability distributions,
negative values are not possible).

2.3 Surrogate Models

2.3.1 Gaussian Process Regression

For low-dimensional problems, Gaussian process (GP) re-
gression (Rasmussen, 2003) is seen as the “gold standard”
for Bayesian design and uncertainty quantification. A
Gaussian process f̄(θ), where θ is a random variable, is
completely specified by its mean function m(θ) and co-
variance function k (θ,θ′). For a dataset D of input-output
pairs ({Θ,y}) and a Gaussian process with constant mean
m0, the random process f̄(θ) conditioned on D follows a
normal distribution with posterior mean and variance

µ(θ) = m0 + k(θ,Θ)K−1 (y −m0) (5)

σ2(θ) = k(θ,θ)− k(θ,Θ)K−1k(Θ,θ) (6)

respectively, where K = k(Θ,Θ) + σ2
ε I. Equation (5)

can be used to predict the value of the surrogate model at
any point θ, and (6) to quantify uncertainty in prediction
at that point (Rasmussen, 2003). Here, the kernel is cho-
sen as a radial-basis-function (RBF) kernel with automatic
relevance determination (ARD),

k (θ,θ′) = σ2
f exp

[
− (θ − θ′)> L−1 (θ − θ′) /2

]
, (7)

where L is a diagonal matrix containing the lengthscales
for each dimension and the GP hyperparameters appearing
in the covariance function (σ2

f and L in (6) are trained by
maximum likelihood estimation).

2.3.2 Deep Neural Networks and Operators

Here we implement the architecture proposed by Lu et al.
(2021) for approximating nonlinear operators: DeepONet,
only covering the basic details here. DeepONet seeks ap-
proximations of nonlinear operators by constructing two
deep neural networks, one representing the input function

at a fixed number of sensors and another for encoding the
“locations” of evaluation of the output function. The first
neural network, termed the “branch”, takes input functions,
u, observed at discrete sensors, xi, i = 1...m. The sec-
ond neural network, the “trunk”, encodes inherent quali-
ties of the operator, denoted as z. Together, these networks
seek to approximate the nonlinear operation upon u and z
as G(u)(z) = y, where y denotes the scalar output from
the u, z input pair. Therefore, our set of input-output pairs
when discussing DeepONet are, {[u, z], G(u)(z)}.

Although NNs are attractive for approximating nonlinear
regression tasks, their complexity rids them of analytical
expressions for uncertainty. There are several techniques
for quantifying uncertainty in neural networks, however we
only consider ensemble methods here (see Gawlikowski
et al. (2021) and Psaros et al. (2022) for comprehensive
reviews of methods for uncertainty quantification in NNs).

Ensemble approaches have been used quite extensively
throughout the literature (Hansen and Salamon, 1990; Lak-
shminarayanan et al., 2016) and despite their improved re-
sults for identifying the underlying tasks at hand (Gustafs-
son et al., 2020), their utility for quantifying uncertainty
in a model remains a topic of debate. The are several
approaches for creating ensembles. These include ran-
dom weight initialization (Lakshminarayanan et al., 2016),
different network architectures (including activation func-
tions), data shuffling, data augmentation, bagging, boot-
strapping, and snapshot ensembles (Loshchilov and Hutter,
2016; Huang et al., 2017; Smith, 2015) among others. Here
we employ random weight initialization, as it has been
found to perform similarly or better as BNN approaches
(Monte Carlo Dropout and Probablistic Backpropagation)
for evaluation accuracy and out-of-distribution detection
for both classification and regression tasks (Lakshmi-
narayanan et al., 2016). Although much of the literature is
skeptical of the generality of ensembles to provide uncer-
tainty estimates, recent viewpoints, specifically Wilson and
Izmailov (2020), have argued that DNN ensembles provide
a very good approximation of the posterior.

We train N = 10 randomly weight-initialized NN models,
each denoted as G̃n, that find the associated solution field
Y for inputs u and z. This allows us to then determine the
point-wise variance of the models as

σ2(u, z) =
1

(N − 1)

N∑
n=1

(G̃n(u)(z)− G̃(u)(z))2 (8)

where G̃(u)(z) is the mean solution of the model ensem-
ble and N are the total number of models retained from
the initialized weight models. Finally, we must adjust the
above representation to match the description for GPs and
to permit a systematic scaling in dimension. The input pa-
rameters, θ, represent the union of two set of parameters,
the stochastic parameters θu and the operation parameters



Oscillator (2D) NLS (2D)

Figure 1: The objective functions, as shown by the contour
values, for the 2-dimensional stochastic forcing applied to
the SO (left) and the stochastic initial condition to the NLS
(right).

θz . The parameters θu typically represent coefficients to
a set of functions that represent a decomposition of a ran-
dom function u = θuΦ(x1, ...xm), while θz = z represent
non-functional parameters. Thus, the DNN/DNO descrip-
tion for UQ may be recast as:

σ2(θ) = σ(θu ∪ θz) (9)

=
1

(N − 1)

N∑
n=1

(G̃n(θuΦ(x1, ...xm))(θz)

− G̃(θuΦ(x1, ...xm))(θz))
2.

For this study, a modest 10 randomly initialized ensemble
members are used.

3 Results

Here we demonstrate the metric on two applications, a
stochastic oscillator (SO) (Mohamad and Sapsis, 2018;
Blanchard and Sapsis, 2020) and a version of the nonlinear
Schrödinger equation (NLS) (Majda et al., 1997). Details
for each set of equations and the appropriate output defini-
tions are given in Appendix A.

We are specifically interested in how uncertainty is quanti-
fied for low- to high-dimensional stochastic processes and
with regard to sparsely and densely populated training sets.
The dimension of the stochastic excitation (SO, u(t)) or
initial condition (NLS, u(x)), is defined by a finite number
of random variables using the Karhunen-Loève expansion,

u ≈ θuΦ, (10)

where θu ∈ Rm is a vector of random variables and Φ are
the eigenvectors of an associated correlation matrix. This
definition allows a systematic increase in the input space,
on a [-6,6] domain, to arbitrarily large dimensions.

a) Stochastic Oscillator

Gaussian Process

Deep Neural Network

b) Nonlinear Schrödinger Equation

Gaussian Process

Deep Neural Network

Figure 2: 2D GP and NN regressions, squared errors, and
predictive variances for SO a) with dense training data
(θn = 81) and NLS b) with sparse training data (θn = 9).

Table 1: Metric values for the visualized squared errors and
predictive variances in figure 2. “Better” scores are bold for
each case.

SO R NDIP PICP LogLL MIWP MSE
GP 0.76 0.99 0.55 -1.65 0.12 0.009
NN 0.76 0.98 0.46 -3.24 0.07 0.004
NLS
GP 0.45 0.42 0.88 2.31 0.046 0.19
NN 0.69 0.93 0.14 -1.09 0.007 0.06



3.1 Gaussian Processes and Deep Neural Networks

3.2 2D Example

For the 2D case, we provide visual examples of our ap-
proach. Figure 1 presents the objective output, or regres-
sion task, for the 2-dimensional stochastic representations
for both the SO and NLS. Considering that only stochastic
dimensions, θu, are considered, the DeepONet architecture
reduces to a standard DNN (or simply NN).

Figure 2 a) provides the estimated maps, the squared error,
and the predictive uncertainties for SO (81 training points),
NLS (9 training points) using both GPs and DNNs, while
table 1 provides the scores from our two metrics and the
four metrics featured in Yao et al. (2019) (defined in Ap-
pendix B). Immediately from the figure and the reported R
value, we observe that both the GP and NN provide pre-
dictive variances that agree similarly in structure with the
squared error. The similarity is so close that their R value
is 0.76 for both models, despite significant differences be-
tween the GP and NN predictive variances. Even with
the visual and R value agreement, the traditionally trusted
PICP and LogLL favor the GP model, while the PICP for
both GP and NN is quite low, and would be considered
unacceptable. For this case, PICP fails to capture the rela-
tionship between true error and predictive variance.

The visualization and metrics of the sparsely trained NLS
example tell an alternate story with a similar conclusion:
The standard metrics cannot identify agreement in structure
between the predictive variance and squared error. Here
the R value for the NN is 0.69 and visual inspection con-
firms a similar structure, but the PICP is only 0.14 and the
LogLL underwhelms the GP case by a factor of e3. The
GP, however, possess a reasonableR at 0.45, but a substan-
tially large PICP of 0.88. Clearly, the GP model provides
a predictive uncertainty that is less informative to the un-
derlying error than the NN. PICP is susceptible to constant
uncertainty. This will be exacerbated in higher dimensions.

3.3 Scaling: Dimensions and Data

We now look to explore the metrics as we increase dimen-
sion and vary the training data from sparse to dense. Here
we only compare MSE, PCIP, R, and NDIP, as LogLL and
MPIW provided consistently monotonic values with in-
creasing data (LogLL increasing, MPIW decreasing), and
limited insight for varied dimensionality.

For the SO case, we provide the median results of 25 inde-
pendent experiments from 1-5D and training points rang-
ing from ntrain = (D + 1)x where D is the dimension and
x = [1, 2, 3, 4] with x = 1 relating to a sparse distribution
and x = 4 being a dense distribution (e.g. D = 2 gives
ntrain = [3, 9, 27, 81].). The metrics are evaluated over
103 test points for 1D, 104 for 2D and 105 for 3 − 5D.

a) Stochastic Oscillator

b) Nonlinear Schrödinger Equation

Figure 3: Median values of the MSE, PICP, R and NDIP
from sparse to dense training points for many dimensions.
a) the stochastic oscillator (25 experiments) and b) the
Nonlinear Schrödinger equation (10 experiments).



NLS Realization

Figure 4: One realization (i.e. θ) of the NLS solution.

All training and test points are computed using Latin hy-
percube sampling (LHS). Figure 3 a) presents the median
metrics related to both models (GP as blue and NN as red)
and all five dimensions. We can see that the R values agree
with the visual evidence presented earlier and PICP tracks
similarly to R for this example. Juxtaposing all subplots
it is not clear which modeling approach is “better”. NNs
provide better MSE, GPs provide slightly better structural
metric values over all cases (especially low-D), and NNs
perform better in both metrics for sparse data. Based on
these results, if one is happy with one model’s uncertainty
quantification, there is no justifiable reason to not be just as
happy with the other.

Turning to the more complex NLS example in 3 b), we test
10 independent experiments over 25 log-spaced training
points, 2D: 3-300, 4D:5-1000, 6D:7-2500, 8D:9-5000,
where the x-axis denotes the indice of the interval. The
MSE shows that for 4D and higher, the GPs are break-
ing down due to the complexity of the map and high-
dimensional regression. Despite this, the PICP for GPs at
all dimensions and training sizes, except 2D at large ntrain,
is nearly 1. The R metric is not fooled by the poor GP re-
gression and gives values of nearly zero for > 2D, until
approximately > 103 points are provided. This is a sig-
nificant amount of training data for GPs. Additionally, the
NDIP metric begins to take action. The low NDIP scores
for GPs at > 2D stress that the predictive variance does
not present the rich distribution of underlying error values.
The NNs, however, provide relatively impressive scores for
R, NDIP, and MSE, for all dimensions. Only PICP reports
poor NN uncertainty quantification.

3.4 Deep Neural Operator: DeepONet

We now extend our analysis for deep neural operators for
the NLS case. Instead of only regressing on a set of ran-
dom initial conditions from 2−8D, we add both the spatial
and temporal dimensions, x, t. This is a particularly chal-
lenging regression. Considering the difficulty of GPs to
parameterize the non-operator case, without x, t, we only
consider the uncertainty of an ensemble of DeepONets.

Deep Neural Operator
a) In Realization Training Points: 10

b) In Realization Training Points: 0

Figure 5: Mean regression, squared error, and predictive
variance over x, t for one realization of θ with 100, 1060,
and 56680 training samples, top to bottom, respectively. a)
provides training that included 10 points from the visual-
ized realization, while b) does not. R from top to bottom:
a) 0.72, 0.61, 0.42; b) -0.18, 0.24, 0.57.



Figure 6: Median values of the MSE, PICP, R and NDIP
from sparse to dense training points for the operator case.

Figure 4 visualizes one realization of an 8D initial condi-
tion propagated in time and space, while 5 provides two
sets of training snapshots for the same realization. Fig-
ure 5 a) provides the mean DNO regressions when 10 ran-
domly chosen points from this realization are include in the
training set, denoted as white points. Regressions are given
for θtrain = [100, 1060, 56650], where θu,train = θtrain/10
as each function set of parameters includes 10 randomly
chosen x, t points. We observe that with little training data,
the squared error and predictive variance are small around
the training points, but as training increases the individual
influence of these points diminishes. Interestingly, simi-
lar errors and variances appear for 5 b) when training in-
creases, despite the absence of training points from this re-
alization.

With a visualization of the task at hand, we apply the met-
rics over the various dimensions and with increasing data
size. Here the training data sizes are log-spaced over an
interval with 25 indices, 2D;x, t: 50-10000, 4D;x, t:70-
25000, 6D;x, t:90-50000, 8D;x, t:110-75000. Figure 6
provides the median metric values for 10 independent ex-
periments. Despite the dimensionality and the large data
sizes considered, both the R and NDIP values are promis-
ing. For the R value it is particularly intriguing that large
data sizes produce substantial agreement with the underly-
ing error. This implies that even at these scales, BED and
BO with DNOs is likely fruitful. The NDIP metric does
show reduction with increased data size at large dimension,
however, the values appear to converge. This suggests the
variance and error distributions are not substantially dis-
connected. Although the PCIP value increases monotoni-
cally with data size, our previous observations leave little
room for prescribing meaning to these trends.

4 Conclusions

The proposed correlation metric computed over predic-
tive uncertainty and squared error provides a represen-
tative measure a model’s underlying predictive deficien-
cies. The metric consistently quantifies the similarity in
structure between uncertainty and error, while other met-
rics do not. Metrics, such as PICP, appear to provide useful
information at low dimensions, but when complexity and
dimensionality are increased these metrics are easily fooled
(e.g. figure 3 b)). The correlation metric provides a means
for quantifying the relationship of the topology between
predictive variance and error. Such a measure is critical for
instilling confidence that the surrogate model of choice is
performing well. This is especially important for Bayesian
experimental design and optimization that rely on intrigu-
ing predictive variance estimates for efficient data acquisi-
tion.

Comparing the uncertainties emitted by GPs, DNNs,
and DNOs, or other models, unjustly biases what a
“good” uncertainty is for a given model. Often, mod-
els such as GPs or Hamiltonian Monte Carlo (Neal et al.,
2011) are lauded for ideal uncertainty quantification, but
this is biased to conceptions of how uncertainty is perceived
in 1 or 2 dimensions (and these models do not scale well).
As the correlation metric shows, uncertainty quantification
can take many forms with similar quantification of the un-
derlying error as shown in figure 6. Any one model is not
superior to another through direct comparison of predictive
variance. Instead, models must be directly assessed against
their own inherent deficiencies. If a model consistently re-
flects correlation of error with predictive variance, then it
honestly informs the user of its deficiencies.

Shallow ensembles of DNNs and DNOs provide en-
couraging predictive variance structure and distribu-
tion with respect to the true error. Here we employ an
ensemble approach consisting of only 10 members, yet the
test accuracy and structure of the predictive variance are of-
ten superior in MSE and correlation metric than GPs. This
is especially true for problems of higher complexity (e.g.
NLS and figure 3 b)) and greater dimensionality. Consider-
ing computational cost for training N members is a critical
disadvantage for ensemble NNs, these results are promis-
ing for those aiming to apply ensemble NNs or DNOs to
BED or BO.

A Applications

A.1 Stochastic Oscillator

Investigated previously by Mohamad and Sapsis (2018)
and Blanchard and Sapsis (2020), the stochastic oscillator



is described as

d2s

dt2
+ δ

ds

dt
+ F (s) = u(t), (11)

where s(t) ∈ R is the state variable, u(t) is a
stationary stochastic process with correlation function
σ2
u exp

[
−τ2/(2`2u)

]
, and F is a nonlinear restoring force

defined by

F (u) =


αs, for 0 ≤ |s| ≤ s1
αs1, for s1 ≤ |s| ≤ s2
αs1 + β (s− s2)

3
, for s2 ≤ |s|

(12)
The remaining parameters take the values, δ = 1.5, α =
1, β = 0.1, s1 = 0.5, s2 = 1.5, σ2

ξ = 0.1, `ξ = 4, and
T = 25. The specific output of interest, shown in figure 2
is the mean value of u(t) over the interval [0, T ] :

f(θ) =
1

T

∫ T

0

s(t;θ)dt. (13)

A.2 Nonlinear Schrödinger Equation

We implement a version of the nonlinear Schrödinger
(NLS) equation, supplemented with a dissipation term for
stability proposed by Majda, McLaughlin, and Tabak (Ma-
jda et al., 1997) for studying 1D wave turbulence. It is
a one-dimensional, dispersive nonlinear prototype model
with intermittent events described by

iut = |∂x|α u+λ |∂x|−β/4
(
||∂x|−β/4 u

∣∣∣2 |∂x|−β/4 u)+iDu,

(14)
where u is a complex scalar, exponents α and β are cho-
sen model parameters, and D is a selective Laplacian. See
(Majda et al., 1997; Cai et al., 1999) for details on the rich
dynamics and (Zakharov et al., 2001, 2004; Pushkarev and
Zakharov, 2013) for its application in understanding ex-
treme rogue waves. We refer the reader to Cousins and
Sapsis (2014) for details in computing this version of the
NLS, but note the chosen parameters for that description
here: α = 1/2, β = 0, λ = −0.5, k∗ = 20, f(k) = 0,
dt = 0.001, and a grid that is periodic between 0-1 with
Nx = 512 grid points.

To propose a stochastic and complex initial condition,
u(x, t = 0), we use the complex-valued kernel

k(x, x′) = σ2
ue
i(x−x′)e−

(x−x′)2
`u , (15)

with σ2
u = 1 and `u = 0.35. The objective function we

define for the NNs is

f(θ) = ||Re(u(x, t = T ;θ))||∞, (16)

where T = 20, while the objective function for DNOs is
simply Re(u(x, t).

B Metrics

All typically used metrics are discussed here where yn refer
to test samples.

Average marginal log-likelihood (LogLL): Maximize

1

N

N∑
n=1

log(p(yn|θn)) (17)

Normalized Mean Squared-Error (MSE): Minimize

1

N

N∑
n=1

(µ(θn)− yn)2 (18)

Prediction Interval Coverage Probability (PICP): Val-
ues close to 0.95

1

N

N∑
n=1

1yn≤ỹ97.5n
· 1yn≥ỹ2.5n

(19)

Mean Prediction Interval Width (MPIW): Minimize

1

N

N∑
n=1

(
ỹ97.5n − ỹ2.5n

)
(20)

where 97.5 and 2.5 refer to percentiles of the posterior dis-
tribution, ỹn.
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